A166012 a(n) = 2*(A000045(n)-(n mod 2)) + 1 + (n mod 2).
1, 2, 3, 4, 7, 10, 17, 26, 43, 68, 111, 178, 289, 466, 755, 1220, 1975, 3194, 5169, 8362, 13531, 21892, 35423, 57314, 92737, 150050, 242787, 392836, 635623, 1028458, 1664081, 2692538, 4356619, 7049156, 11405775, 18454930, 29860705, 48315634, 78176339
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-1,-1).
Programs
-
Mathematica
Table[2*Fibonacci[n] + (1 + (-1)^n)/2, {n, 0, 100}] (* G. C. Greubel, Apr 21 2016 *) LinearRecurrence[{1,2,-1,-1},{1,2,3,4},40] (* Harvey P. Dale, May 01 2018 *)
-
PARI
Vec((1+x-x^2-2*x^3)/((1-x)*(1+x)*(1-x-x^2)) + O(x^50)) \\ Colin Barker, Apr 22 2016
Formula
Without reference to A000045: a(n)=2*Floor(a(n-1)/2)+a(n-2). - Clark Kimberling, Nov 07 2009
If n mod 2 = 0 then a(n) = a(n-1) + a(n-2), else a(n) = a(n-1) + a(n-2) - 1.
a(n) = 2*Fibonacci(n) + (1+(-1)^n)/2.
a(n) = 2*Fibonacci(n) + [(n+1)mod 2]. - Gary Detlefs, Dec 29 2010
G.f.: (1 + x - x^2 - 2*x^3)/((1 - x^2)*(1 - x - x^2)). - Ilya Gutkovskiy, Apr 22 2016
From Colin Barker, Apr 22 2016: (Start)
a(n) = a(n-1)+2*a(n-2)-a(n-3)-a(n-4) for n>3.
a(n) = (1/2+(-1)^n/2-(2*((1/2*(1-sqrt(5)))^n-(1/2*(1+sqrt(5)))^n))/sqrt(5)).
(End)
Comments