cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166135 Number of possible paths to each node that lies along the edge of a cut 4-nomial tree, that is rooted one unit from the cut.

Original entry on oeis.org

1, 1, 3, 7, 22, 65, 213, 693, 2352, 8034, 28014, 98505, 350548, 1256827, 4542395, 16517631, 60417708, 222087320, 820099720, 3040555978, 11314532376, 42243332130, 158196980682, 594075563613, 2236627194858, 8440468925400, 31921622746680, 120970706601255
Offset: 1

Views

Author

Rick Jarosh (rick(AT)jarosh.net), Oct 08 2009

Keywords

Comments

This is the third member of an infinite series of infinite series, the first two being the Catalan and Motzkin integers. The Catalan numbers lie on the edge of cut 2-nomial trees, Motzkin integers on the edge of cut 3-nomial trees.
a(n) is the number of increasing unary-binary trees with associated permutation that avoids 213. For more information about increasing unary-binary trees with an associated permutation, see A245888. - Manda Riehl, Aug 07 2014
Number of positive walks with n steps {-2,-1,1,2} starting at the origin, ending at altitude 1, and staying strictly above the x-axis. - David Nguyen, Dec 16 2016

Crossrefs

A055113 is the third sequence from the top of the graph illustrated above.

Programs

  • Magma
    [(&+[Binomial(n,k)*Binomial(n,2*n-3*k-1): k in [0..n]])/n : n in [1..30]]; // G. C. Greubel, Dec 12 2019
    
  • Maple
    seq( add(binomial(n,k)*binomial(n,2*n-3*k-1), k=0..n)/n, n=1..30); # G. C. Greubel, Dec 12 2019
  • Mathematica
    Rest[CoefficientList[Series[(Sqrt[(2-2Sqrt[1-4x]-3x)/x]-1)/2, {x, 0, 30}],x]] (* Benedict W. J. Irwin, Sep 24 2016 *)
  • PARI
    vector(30, n, sum(k=0,n, binomial(n,k)*binomial(n,2*n-3*k-1))/n ) \\ G. C. Greubel, Dec 12 2019
    
  • Sage
    [sum(binomial(n,k)*binomial(n,2*n-3*k-1) for k in (0..n))/n for n in (1..30)] # G. C. Greubel, Dec 12 2019

Formula

a(n) = ((36*n+18)*A092765(n) + (11*n+9)*A092765(n+1))/(2*(5*n+3)*(2*n+3)) (based on guessed recurrence). - Mark van Hoeij, Jul 14 2010
A(x) satisfies A(x)+A(x)^2 = A000108(x)-1, a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1) * C(2*n,n-k)*C(2*k-2,k-1). - Vladimir Kruchinin, May 12 2012
G.f.: (sqrt((2 - 2*sqrt(1-4*x) - 3*x)/x) - 1)/2. - Benedict W. J. Irwin, Sep 24 2016
a(n) ~ 4^n/(sqrt(5*Pi)*n^(3/2)). - Vaclav Kotesovec, Sep 25 2016
Conjecture: 2*n*(2*n+1)*a(n) + (17*n^2-53*n+24)*a(n-1) + 6*(-13*n^2+43*n-36)*a(n-2) - 108*(2*n-5)*(n-3)*a(n-3) = 0. - R. J. Mathar, Oct 08 2016
a(n) = (1/n)*Sum_{k=0..n} binomial(n,k)*binomial(n,2*n-3*k-1). - David Nguyen, Dec 31 2016
From Alexander Burstein, Dec 12 2019: (Start)
1 + x*A(x) = 1/C(-x*C(x)^2), where C(x) is the g.f. of A000108.
F(x) = x*(1+x*A(x)) = x/C(-x*C(x)^2) is a pseudo-involution, i.e., the series reversion of x*(1 + x*A(x)) is x*(1 - x*A(-x)).
The B-sequence of F(x) is A069271, i.e., F(x) = x + x*F(x)*A069271(x*F(x)). (End)