cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A014817 a(n) = Sum_{k=1..n} floor(k^2/n).

Original entry on oeis.org

1, 2, 4, 7, 9, 13, 18, 24, 29, 34, 42, 51, 57, 67, 78, 90, 97, 110, 122, 137, 149, 163, 180, 198, 211, 226, 246, 265, 281, 303, 324, 348, 365, 386, 412, 439, 457, 483, 512, 540, 561, 590, 618, 651, 679, 709, 742
Offset: 1

Views

Author

Keywords

Examples

			Row sums of the underlying triangle of floor(k^2/n), 1<=k<=n:
1;
0,2;
0,1,3;
0,1,2,4;
0,0,1,3,5;
0,0,1,2,4,6;
0,0,1,2,3,5,7;
0,0,1,2,3,4,6,8;
0,0,1,1,2,4,5,7,9;
0,0,0,1,2,3,4,6,8,10;
- _R. J. Mathar_, Aug 09 2013
		

References

  • M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 103.

Crossrefs

Programs

Formula

a(n) = n +A166375(n).
For prime p>2, a(p) = (p^2+2)/3 - A228131(p)/p. In particular, for prime p==1 (mod 4), a(p) = (p^2+2)/3. - Max Alekseyev, Aug 11 2013

A166373 Triangle read by rows for floor(j^2 / n) with n >= 2 and 1<=j

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 0, 1, 3, 0, 0, 1, 2, 4, 0, 0, 1, 2, 3, 5, 0, 0, 1, 2, 3, 4, 6, 0, 0, 1, 1, 2, 4, 5, 7, 0, 0, 0, 1, 2, 3, 4, 6, 8, 0, 0, 0, 1, 2, 3, 4, 5, 7, 9, 0, 0, 0, 1, 2, 3, 4, 5, 6, 8, 10, 0, 0, 0, 1, 1, 2, 3, 4, 6, 7, 9, 11, 0, 0, 0, 1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 9
Offset: 2

Views

Author

Christopher Hunt Gribble, Oct 13 2009. Offset corrected Oct 18 2009

Keywords

Examples

			Part of the triangle from which the sequence is constructed is shown below.
.....j..1..2..3..4..5..6..7..8..9.10.11.12.13.14
...n
...2....0
...3....0..1
...4....0..1..2
...5....0..0..1..3
...6....0..0..1..2..4
...7....0..0..1..2..3..5
...8....0..0..1..2..3..4..6
...9....0..0..1..1..2..4..5..7
..10....0..0..0..1..2..3..4..6..8
..11....0..0..0..1..2..3..4..5..7..9
..12....0..0..0..1..2..3..4..5..6..8.10
..13....0..0..0..1..1..2..3..4..6..7..9.11
..14....0..0..0..1..1..2..3..4..5..7..8.10.12
..15....0..0..0..1..1..2..3..4..5..6..8..9.11.13
		

Crossrefs

A165974 is contained in this sequence.
Cf. A166381 (column sums), A166375 (row sums).

Programs

A165993 a(n) = sum_{j=1..prime(n)-1} floor (j^2/prime(n)).

Original entry on oeis.org

0, 1, 4, 11, 31, 44, 80, 103, 157, 252, 293, 420, 520, 575, 695, 884, 1105, 1180, 1431, 1617, 1704, 2007, 2217, 2552, 3040, 3300, 3439, 3713, 3852, 4144, 5255, 5595, 6120, 6305, 7252, 7457, 8060, 8695, 9141, 9804, 10507, 10740, 11983, 12224, 12740
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[j^2/n],{j,n-1}],{n,Prime[Range[50]]}] (* Harvey P. Dale, Aug 10 2014 *)
  • PARI
    a(n) = sum(j=1, prime(n)-1, floor (j^2/prime(n))) \\ Michel Marcus, Jun 20 2013
    
  • PARI
    a(n)=my(p=prime(n));sum(j=1,p-1,j^2\p) \\ Charles R Greathouse IV, Jun 20 2013

Formula

a(n) = A166375(prime(n)-1). - Charles R Greathouse IV, Jun 28 2013

Extensions

Definition rephrased by R. J. Mathar, Oct 09 2009

A166387 a(n) = sum (floor (j^2/n), 1 <= j <= n-1) - floor ((n-1)(n-2)/3), n >= 2.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 2, 2, 0, 1, 3, 0, 1, 3, 4, 0, 2, 1, 3, 2, 1, 3, 6, 2, 0, 3, 3, 0, 3, 3, 6, 2, 0, 3, 7, 0, 1, 5, 6, 0, 2, 1, 5, 4, 3, 5, 10, 4, 2, 3, 3, 0, 3, 5, 8, 2, 0, 3, 9, 0, 3, 7, 10, 0, 2, 1, 5, 4, 3, 7, 12, 0, 0, 7, 5, 2, 5, 5, 12, 6, 0, 3, 9, 0, 1, 7, 8, 0, 4, 3, 7, 4, 5, 9, 16, 0, 4
Offset: 2

Views

Author

Keywords

Comments

a(n) = 0 when n = 2, any prime of the form 4k+1 with k >= 1 and any product of these without repetition, e.g. 2x5x17.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Floor[k^2/n], {k, 1, n - 1}] - Floor[(n - 1)*(n - 2)/3], {n, 2, 100}] (* G. C. Greubel, May 12 2016 *)
  • PARI
    a(n) = sum(j=1,n-1, j^2\n) - ((n-1)*(n-2))\3 \\ Michel Marcus, Jun 21 2013

Formula

a(n) = A166375(n) - A128422(n).

Extensions

Corrected and enhanced by Christopher Hunt Gribble, Dec 01 2009
Showing 1-4 of 4 results.