A166444 a(0) = 0, a(1) = 1 and for n > 1, a(n) = sum of all previous terms.
0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
Examples
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 16*x^6 + 32*x^7 + 64*x^8 + 128*x^9 + ...
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..3317
- Index entries for linear recurrences with constant coefficients, signature (2).
Crossrefs
Programs
-
Magma
[n le 1 select n else 2^(n-2): n in [0..40]]; // G. C. Greubel, Jul 27 2024
-
Maple
a:= n-> `if`(n<2, n, 2^(n-2)): seq(a(n), n=0..40); # Alois P. Heinz, Jun 02 2021
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = Plus @@ Array[a, n - 1]; Array[a, 35, 0]
-
SageMath
[(2^n +2*int(n==1) -int(n==0))/4 for n in range(41)] # G. C. Greubel, Jul 27 2024
Formula
a(n) = A000079(n-1) for n > 0.
O.g.f.: x*(1 - x) / (1 - 2*x) = x / (1 - x / (1 - x)).
a(n) = (1-n) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (exp(2*x) + 2*x - 1)/4. - Stefano Spezia, Aug 07 2022
Comments