cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166444 a(0) = 0, a(1) = 1 and for n > 1, a(n) = sum of all previous terms.

Original entry on oeis.org

0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Robert G. Wilson v, Oct 13 2009

Keywords

Comments

Essentially a duplicate of A000079. - N. J. A. Sloane, Oct 15 2009
a(n) is the number of compositions of n into an odd number of parts.
Also 0 together with A011782. - Omar E. Pol, Oct 28 2013
Inverse INVERT transform of A001519. - R. J. Mathar, Dec 08 2022

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 16*x^6 + 32*x^7 + 64*x^8 + 128*x^9 + ...
		

Crossrefs

Programs

  • Magma
    [n le 1 select n else 2^(n-2): n in [0..40]]; // G. C. Greubel, Jul 27 2024
    
  • Maple
    a:= n-> `if`(n<2, n, 2^(n-2)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 02 2021
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Plus @@ Array[a, n - 1]; Array[a, 35, 0]
  • SageMath
    [(2^n +2*int(n==1) -int(n==0))/4 for n in range(41)] # G. C. Greubel, Jul 27 2024

Formula

a(n) = A000079(n-1) for n > 0.
O.g.f.: x*(1 - x) / (1 - 2*x) = x / (1 - x / (1 - x)).
a(n) = (1-n) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (exp(2*x) + 2*x - 1)/4. - Stefano Spezia, Aug 07 2022