cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A010060 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 0 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Named after Axel Thue, whose name is pronounced as if it were spelled "Tü" where the ü sound is roughly as in the German word üben. (It is incorrect to say "Too-ee" or "Too-eh".) - N. J. A. Sloane, Jun 12 2018
Also called the Thue-Morse infinite word, or the Morse-Hedlund sequence, or the parity sequence.
Fixed point of the morphism 0 --> 01, 1 --> 10, see example. - Joerg Arndt, Mar 12 2013
The sequence is cubefree (does not contain three consecutive identical blocks) [see Offner for a direct proof] and is overlap-free (does not contain XYXYX where X is 0 or 1 and Y is any string of 0's and 1's).
a(n) = "parity sequence" = parity of number of 1's in binary representation of n.
To construct the sequence: alternate blocks of 0's and 1's of successive lengths A003159(k) - A003159(k-1), k = 1, 2, 3, ... (A003159(0) = 0). Example: since the first seven differences of A003159 are 1, 2, 1, 1, 2, 2, 2, the sequence starts with 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0. - Emeric Deutsch, Jan 10 2003
Characteristic function of A000069 (odious numbers). - Ralf Stephan, Jun 20 2003
a(n) = S2(n) mod 2, where S2(n) = sum of digits of n, n in base-2 notation. There is a class of generalized Thue-Morse sequences: Let Sk(n) = sum of digits of n; n in base-k notation. Let F(t) be some arithmetic function. Then a(n)= F(Sk(n)) mod m is a generalized Thue-Morse sequence. The classical Thue-Morse sequence is the case k=2, m=2, F(t)= 1*t. - Ctibor O. Zizka, Feb 12 2008 (with correction from Daniel Hug, May 19 2017)
More generally, the partial sums of the generalized Thue-Morse sequences a(n) = F(Sk(n)) mod m are fractal, where Sk(n) is sum of digits of n, n in base k; F(t) is an arithmetic function; m integer. - Ctibor O. Zizka, Feb 25 2008
Starting with offset 1, = running sums mod 2 of the kneading sequence (A035263, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, ...); also parity of A005187: (1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, ...). - Gary W. Adamson, Jun 15 2008
Generalized Thue-Morse sequences mod n (n>1) = the array shown in A141803. As n -> infinity the sequences -> (1, 2, 3, ...). - Gary W. Adamson, Jul 10 2008
The Thue-Morse sequence for N = 3 = A053838, (sum of digits of n in base 3, mod 3): (0, 1, 2, 1, 2, 0, 2, 0, 1, 1, 2, ...) = A004128 mod 3. - Gary W. Adamson, Aug 24 2008
For all positive integers k, the subsequence a(0) to a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)) to a(2^(k+1)+2^(k-1)-1). That is to say, the first half of A_k is identical to the second half of B_k, and the second half of A_k is identical to the first quarter of B_{k+1}, which consists of the k/2 terms immediately following B_k.
Proof: The subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, is by definition formed from the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, by interchanging its 0's and 1's. In turn, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first half of A_k, which is by definition also A_{k-1}, by interchanging its 0's and 1's. Interchanging the 0's and 1's of a subsequence twice leaves it unchanged, so the subsequence a(2^k+2^(k-1)) to a(2^(k+1)-1), the second half of B_k, must be identical to the subsequence a(0) to a(2^(k-1)-1), the first half of A_k.
Also, the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), the first quarter of A_{k+1}, by interchanging its 0's and 1's. As noted above, the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k, which is by definition also B_{k-1}, is by definition formed from the subsequence a(0) to a(2^(k-1)-1), which is by definition A_{k-1}, by interchanging its 0's and 1's, as well. If two subsequences are formed from the same subsequence by interchanging its 0's and 1's then they must be identical, so the subsequence a(2^(k+1)) to a(2^(k+1)+2^(k-1)-1), the first quarter of B_{k+1}, must be identical to the subsequence a(2^(k-1)) to a(2^k-1), the second half of A_k.
Therefore the subsequence a(0), ..., a(2^(k-1)-1), a(2^(k-1)), ..., a(2^k-1) is identical to the subsequence a(2^k+2^(k-1)), ..., a(2^(k+1)-1), a(2^(k+1)), ..., a(2^(k+1)+2^(k-1)-1), QED.
According to the German chess rules of 1929 a game of chess was drawn if the same sequence of moves was repeated three times consecutively. Euwe, see the references, proved that this rule could lead to infinite games. For his proof he reinvented the Thue-Morse sequence. - Johannes W. Meijer, Feb 04 2010
"Thue-Morse 0->01 & 1->10, at each stage append the previous with its complement. Start with 0, 1, 2, 3 and write them in binary. Next calculate the sum of the digits (mod 2) - that is divide the sum by 2 and use the remainder." Pickover, The Math Book.
Let s_2(n) be the sum of the base-2 digits of n and epsilon(n) = (-1)^s_2(n), the Thue-Morse sequence, then prod(n >= 0, ((2*n+1)/(2*n+2))^epsilon(n) ) = 1/sqrt(2). - Jonathan Vos Post, Jun 06 2012
Dekking shows that the constant obtained by interpreting this sequence as a binary expansion is transcendental; see also "The Ubiquitous Prouhet-Thue-Morse Sequence". - Charles R Greathouse IV, Jul 23 2013
Drmota, Mauduit, and Rivat proved that the subsequence a(n^2) is normal--see A228039. - Jonathan Sondow, Sep 03 2013
Although the probability of a 0 or 1 is equal, guesses predicated on the latest bit seen produce a correct match 2 out of 3 times. - Bill McEachen, Mar 13 2015
From a(0) to a(2n+1), there are n+1 terms equal to 0 and n+1 terms equal to 1 (see Hassan Tarfaoui link, Concours Général 1990). - Bernard Schott, Jan 21 2022

Examples

			The evolution starting at 0 is:
  0
  0, 1
  0, 1, 1, 0
  0, 1, 1, 0, 1, 0, 0, 1
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0
  0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
  .......
A_2 = 0 1 1 0, so B_2 = 1 0 0 1 and A_3 = A_2 B_2 = 0 1 1 0 1 0 0 1.
From _Joerg Arndt_, Mar 12 2013: (Start)
The first steps of the iterated substitution are
Start: 0
Rules:
  0 --> 01
  1 --> 10
-------------
0:   (#=1)
  0
1:   (#=2)
  01
2:   (#=4)
  0110
3:   (#=8)
  01101001
4:   (#=16)
  0110100110010110
5:   (#=32)
  01101001100101101001011001101001
6:   (#=64)
  0110100110010110100101100110100110010110011010010110100110010110
(End)
From _Omar E. Pol_, Oct 28 2013: (Start)
Written as an irregular triangle in which row lengths is A011782, the sequence begins:
  0;
  1;
  1,0;
  1,0,0,1;
  1,0,0,1,0,1,1,0;
  1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1;
  1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0;
It appears that: row j lists the first A011782(j) terms of A010059, with j >= 0; row sums give A166444 which is also 0 together with A011782; right border gives A000035.
(End)
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 15.
  • Jason Bell, Michael Coons, and Eric Rowland, "The Rational-Transcendental Dichotomy of Mahler Functions", Journal of Integer Sequences, Vol. 16 (2013), #13.2.10.
  • J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
  • B. Bollobas, The Art of Mathematics: Coffee Time in Memphis, Cambridge, 2006, p. 224.
  • S. Brlek, Enumeration of factors in the Thue-Morse word, Discrete Applied Math., 24 (1989), 83-96. doi:10.1016/0166-218X(92)90274-E.
  • Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.
  • Y. Bugeaud and M. Queffélec, On Rational Approximation of the Binary Thue-Morse-Mahler Number, Journal of Integer Sequences, 16 (2013), #13.2.3.
  • Currie, James D. "Non-repetitive words: Ages and essences." Combinatorica 16.1 (1996): 19-40
  • Colin Defant, Anti-Power Prefixes of the Thue-Morse Word, Journal of Combinatorics, 24(1) (2017), #P1.32
  • F. M. Dekking, Transcendance du nombre de Thue-Morse, Comptes Rendus de l'Academie des Sciences de Paris 285 (1977), pp. 157-160.
  • F. M. Dekking, On repetitions of blocks in binary sequences. J. Combinatorial Theory Ser. A 20 (1976), no. 3, pp. 292-299. MR0429728(55 #2739)
  • Dekking, Michel, Michel Mendès France, and Alf van der Poorten. "Folds." The Mathematical Intelligencer, 4.3 (1982): 130-138 & front cover, and 4:4 (1982): 173-181 (printed in two parts).
  • Dubickas, Artūras. On a sequence related to that of Thue-Morse and its applications. Discrete Math. 307 (2007), no. 9-10, 1082--1093. MR2292537 (2008b:11086).
  • Fabien Durand, Julien Leroy, and Gwenaël Richomme, "Do the Properties of an S-adic Representation Determine Factor Complexity?", Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
  • M. Euwe, Mengentheoretische Betrachtungen Über das Schachspiel, Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam, Vol. 32 (5): 633-642, 1929.
  • S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 6.8.
  • W. H. Gottschalk and G. A. Hedlund, Topological Dynamics. American Mathematical Society, Colloquium Publications, Vol. 36, Providence, RI, 1955, p. 105.
  • J. Grytczuk, Thue type problems for graphs, points and numbers, Discrete Math., 308 (2008), 4419-4429.
  • A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
  • Mari Huova and Juhani Karhumäki, "On Unavoidability of k-abelian Squares in Pure Morphic Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.9.
  • B. Kitchens, Review of "Computational Ergodic Theory" by G. H. Choe, Bull. Amer. Math. Soc., 44 (2007), 147-155.
  • Le Breton, Xavier, Linear independence of automatic formal power series. Discrete Math. 306 (2006), no. 15, 1776-1780.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 23.
  • Donald MacMurray, A mathematician gives an hour to chess, Chess Review 6 (No. 10, 1938), 238. [Discusses Marston's 1938 article]
  • Mauduit, Christian. Multiplicative properties of the Thue-Morse sequence. Period. Math. Hungar. 43 (2001), no. 1-2, 137--153. MR1830572 (2002i:11081)
  • C. A. Pickover, Wonders of Numbers, Adventures in Mathematics, Mind and Meaning, Chapter 17, 'The Pipes of Papua,' Oxford University Press, Oxford, England, 2000, pages 34-38.
  • C. A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 316.
  • Narad Rampersad and Elise Vaslet, "On Highly Repetitive and Power Free Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.7.
  • G. Richomme, K. Saari, L. Q. Zamboni, Abelian complexity in minimal subshifts, J. London Math. Soc. 83(1) (2011) 79-95.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • M. Rigo, P. Salimov, and E. Vandomme, "Some Properties of Abelian Return Words", Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
  • Benoit Rittaud, Elise Janvresse, Emmanuel Lesigne and Jean-Christophe Novelli, Quand les maths se font discrètes, Le Pommier, 2008 (ISBN 978-2-7465-0370-0).
  • A. Salomaa, Jewels of Formal Language Theory. Computer Science Press, Rockville, MD, 1981, p. 6.
  • Shallit, J. O. "On Infinite Products Associated with Sums of Digits." J. Number Th. 21, 128-134, 1985.
  • Ian Stewart, "Feedback", Mathematical Recreations Column, Scientific American, 274 (No. 3, 1996), page 109 [Historical notes on this sequence]
  • Thomas Stoll, On digital blocks of polynomial values and extractions in the Rudin-Shapiro sequence, RAIRO - Theoretical Informatics and Applications (RAIRO: ITA), EDP Sciences, 2016, 50, pp. 93-99. .
  • A. Thue. Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, No. 7 (1906), 1-22.
  • A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania, 1 (1912), 1-67.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 890.

Crossrefs

Cf. A001285 (for 1, 2 version), A010059 (for 1, 0 version), A106400 (for +1, -1 version), A048707. A010060(n)=A000120(n) mod 2.
Cf. A007413, A080813, A080814, A036581, A108694. See also the Thue (or Roth) constant A014578, also A014571.
Run lengths give A026465. Backward first differences give A029883.
Cf. A004128, A053838, A059448, A171900, A161916, A214212, A005942 (subword complexity), A010693 (Abelian complexity), A225186 (squares), A228039 (a(n^2)), A282317.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.

Programs

  • Haskell
    a010060 n = a010060_list !! n
    a010060_list =
       0 : interleave (complement a010060_list) (tail a010060_list)
       where complement = map (1 - )
             interleave (x:xs) ys = x : interleave ys xs
    -- Doug McIlroy (doug(AT)cs.dartmouth.edu), Jun 29 2003
    -- Edited by Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    s := proc(k) local i, ans; ans := [ 0,1 ]; for i from 0 to k do ans := [ op(ans),op(map(n->(n+1) mod 2, ans)) ] od; return ans; end; t1 := s(6); A010060 := n->t1[n]; # s(k) gives first 2^(k+2) terms.
    a := proc(k) b := [0]: for n from 1 to k do b := subs({0=[0,1], 1=[1,0]},b) od: b; end; # a(k), after the removal of the brackets, gives the first 2^k terms. # Example: a(3); gives [[[[0, 1], [1, 0]], [[1, 0], [0, 1]]]]
    A010060:=proc(n)
        add(i,i=convert(n, base, 2)) mod 2 ;
    end proc:
    seq(A010060(n),n=0..104); # Emeric Deutsch, Mar 19 2005
    map(`-`,convert(StringTools[ThueMorse](1000),bytes),48); # Robert Israel, Sep 22 2014
  • Mathematica
    Table[ If[ OddQ[ Count[ IntegerDigits[n, 2], 1]], 1, 0], {n, 0, 100}];
    mt = 0; Do[ mt = ToString[mt] <> ToString[(10^(2^n) - 1)/9 - ToExpression[mt] ], {n, 0, 6} ]; Prepend[ RealDigits[ N[ ToExpression[mt], 2^7] ] [ [1] ], 0]
    Mod[ Count[ #, 1 ]& /@Table[ IntegerDigits[ i, 2 ], {i, 0, 2^7 - 1} ], 2 ] (* Harlan J. Brothers, Feb 05 2005 *)
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, 7] (* Robert G. Wilson v Sep 26 2006 *)
    a[n_] := If[n == 0, 0, If[Mod[n, 2] == 0, a[n/2], 1 - a[(n - 1)/2]]] (* Ben Branman, Oct 22 2010 *)
    a[n_] := Mod[Length[FixedPointList[BitAnd[#, # - 1] &, n]], 2] (* Jan Mangaldan, Jul 23 2015 *)
    Table[2/3 (1 - Cos[Pi/3 (n - Sum[(-1)^Binomial[n, k], {k, 1, n}])]), {n, 0, 100}] (* or, for version 10.2 or higher *) Table[ThueMorse[n], {n, 0, 100}] (* Vladimir Reshetnikov, May 06 2016 *)
    ThueMorse[Range[0, 100]] (* The program uses the ThueMorse function from Mathematica version 11 *) (* Harvey P. Dale, Aug 11 2016 *)
    Nest[Join[#, 1 - #] &, {0}, 7] (* Paolo Xausa, Oct 25 2024 *)
  • PARI
    a(n)=if(n<1,0,sum(k=0,length(binary(n))-1,bittest(n,k))%2)
    
  • PARI
    a(n)=if(n<1,0,subst(Pol(binary(n)), x,1)%2)
    
  • PARI
    default(realprecision, 6100); x=0.0; m=20080; for (n=1, m-1, x=x+x; x=x+sum(k=0, length(binary(n))-1, bittest(n, k))%2); x=2*x/2^m; for (n=0, 20000, d=floor(x); x=(x-d)*2; write("b010060.txt", n, " ", d)); \\ Harry J. Smith, Apr 28 2009
    
  • PARI
    a(n)=hammingweight(n)%2 \\ Charles R Greathouse IV, Mar 22 2013
    
  • Python
    A010060_list = [0]
    for _ in range(14):
        A010060_list += [1-d for d in A010060_list] # Chai Wah Wu, Mar 04 2016
    
  • Python
    def A010060(n): return n.bit_count()&1 # Chai Wah Wu, Mar 01 2023
    
  • R
    maxrow <- 8 # by choice
    b01 <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
    b01[2^(m+1)+    k] <-   b01[2^m+k]
    b01[2^(m+1)+2^m+k] <- 1-b01[2^m+k]
    }
    (b01 <- c(0,b01))
    # Yosu Yurramendi, Apr 10 2017

Formula

a(2n) = a(n), a(2n+1) = 1 - a(n), a(0) = 0. Also, a(k+2^m) = 1 - a(k) if 0 <= k < 2^m.
If n = Sum b_i*2^i is the binary expansion of n then a(n) = Sum b_i (mod 2).
Let S(0) = 0 and for k >= 1, construct S(k) from S(k-1) by mapping 0 -> 01 and 1 -> 10; sequence is S(infinity).
G.f.: (1/(1 - x) - Product_{k >= 0} (1 - x^(2^k)))/2. - Benoit Cloitre, Apr 23 2003
a(0) = 0, a(n) = (n + a(floor(n/2))) mod 2; also a(0) = 0, a(n) = (n - a(floor(n/2))) mod 2. - Benoit Cloitre, Dec 10 2003
a(n) = -1 + (Sum_{k=0..n} binomial(n,k) mod 2) mod 3 = -1 + A001316(n) mod 3. - Benoit Cloitre, May 09 2004
Let b(1) = 1 and b(n) = b(ceiling(n/2)) - b(floor(n/2)) then a(n-1) = (1/2)*(1 - b(2n-1)). - Benoit Cloitre, Apr 26 2005
a(n) = 1 - A010059(n) = A001285(n) - 1. - Ralf Stephan, Jun 20 2003
a(n) = A001969(n) - 2n. - Franklin T. Adams-Watters, Aug 28 2006
a(n) = A115384(n) - A115384(n-1) for n > 0. - Reinhard Zumkeller, Aug 26 2007
For n >= 0, a(A004760(n+1)) = 1 - a(n). - Vladimir Shevelev, Apr 25 2009
a(A160217(n)) = 1 - a(n). - Vladimir Shevelev, May 05 2009
a(n) == A000069(n) (mod 2). - Robert G. Wilson v, Jan 18 2012
a(n) = A000035(A000120(n)). - Omar E. Pol, Oct 26 2013
a(n) = A000035(A193231(n)). - Antti Karttunen, Dec 27 2013
a(n) + A181155(n-1) = 2n for n >= 1. - Clark Kimberling, Oct 06 2014
G.f. A(x) satisfies: A(x) = x / (1 - x^2) + (1 - x) * A(x^2). - Ilya Gutkovskiy, Jul 29 2021
From Bernard Schott, Jan 21 2022: (Start)
a(n) = a(n*2^k) for k >= 0.
a((2^m-1)^2) = (1-(-1)^m)/2 (see Hassan Tarfaoui link, Concours Général 1990). (End)

A001519 a(n) = 3*a(n-1) - a(n-2) for n >= 2, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0

Views

Author

Keywords

Comments

This is a bisection of the Fibonacci sequence A000045. a(n) = F(2*n-1), with F(n) = A000045(n) and F(-1) = 1.
Number of ordered trees with n+1 edges and height at most 3 (height=number of edges on a maximal path starting at the root). Number of directed column-convex polyominoes of area n+1. Number of nondecreasing Dyck paths of length 2n+2. - Emeric Deutsch, Jul 11 2001
Terms are the solutions x to: 5x^2-4 is a square, with 5x^2-4 in A081071 and sqrt(5x^2-4) in A002878. - Benoit Cloitre, Apr 07 2002
a(0) = a(1) = 1, a(n+1) is the smallest Fibonacci number greater than the n-th partial sum. - Amarnath Murthy, Oct 21 2002
The fractional part of tau*a(n) decreases monotonically to zero. - Benoit Cloitre, Feb 01 2003
Numbers k such that floor(phi^2*k^2) - floor(phi*k)^2 = 1 where phi=(1+sqrt(5))/2. - Benoit Cloitre, Mar 16 2003
Number of leftist horizontally convex polyominoes with area n+1.
Number of 31-avoiding words of length n on alphabet {1,2,3} which do not end in 3. (E.g., at n=3, we have 111, 112, 121, 122, 132, 211, 212, 221, 222, 232, 321, 322 and 332.) See A028859. - Jon Perry, Aug 04 2003
Appears to give all solutions > 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r=phi=(1+sqrt(5))/2. - Benoit Cloitre, Feb 24 2004
a(1) = 1, a(2) = 2, then the least number such that the square of any term is just less than the geometric mean of its neighbors. a(n+1)*a(n-1) > a(n)^2. - Amarnath Murthy, Apr 06 2004
All positive integer solutions of Pell equation b(n)^2 - 5*a(n+1)^2 = -4 together with b(n)=A002878(n), n >= 0. - Wolfdieter Lang, Aug 31 2004
Essentially same as Pisot sequence E(2,5).
Number of permutations of [n+1] avoiding 321 and 3412. E.g., a(3) = 13 because the permutations of [4] avoiding 321 and 3412 are 1234, 2134, 1324, 1243, 3124, 2314, 2143, 1423, 1342, 4123, 3142, 2413, 2341. - Bridget Tenner, Aug 15 2005
Number of 1324-avoiding circular permutations on [n+1].
A subset of the Markoff numbers (A002559). - Robert G. Wilson v, Oct 05 2005
(x,y) = (a(n), a(n+1)) are the solutions of x/(yz) + y/(xz) + z/(xy) = 3 with z=1. - Floor van Lamoen, Nov 29 2001
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 5 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba, Jun 10 2004
With interpolated zeros, counts closed walks of length n at the start or end node of P_4. a(n) counts closed walks of length 2n at the start or end node of P_4. The sequence 0,1,0,2,0,5,... counts walks of length n between the start and second node of P_4. - Paul Barry, Jan 26 2005
a(n) is the number of ordered trees on n edges containing exactly one non-leaf vertex all of whose children are leaves (every ordered tree must contain at least one such vertex). For example, a(0) = 1 because the root of the tree with no edges is not considered to be a leaf and the condition "all children are leaves" is vacuously satisfied by the root and a(4) = 13 counts all 14 ordered trees on 4 edges (A000108) except (ignore dots)
|..|
.\/.
which has two such vertices. - David Callan, Mar 02 2005
Number of directed column-convex polyominoes of area n. Example: a(2)=2 because we have the 1 X 2 and the 2 X 1 rectangles. - Emeric Deutsch, Jul 31 2006
Same as the number of Kekulé structures in polyphenanthrene in terms of the number of hexagons in extended (1,1)-nanotubes. See Table 1 on page 411 of I. Lukovits and D. Janezic. - Parthasarathy Nambi, Aug 22 2006
Number of free generators of degree n of symmetric polynomials in 3-noncommuting variables. - Mike Zabrocki, Oct 24 2006
Inverse: With phi = (sqrt(5) + 1)/2, log_phi((sqrt(5)*a(n) + sqrt(5*a(n)^2 - 4))/2) = n for n >= 1. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
Consider a teacher who teaches one student, then he finds he can teach two students while the original student learns to teach a student. And so on with every generation an individual can teach one more student then he could before. a(n) starting at a(2) gives the total number of new students/teachers (see program). - Ben Paul Thurston, Apr 11 2007
The Diophantine equation a(n)=m has a solution (for m >= 1) iff ceiling(arcsinh(sqrt(5)*m/2)/log(phi)) != ceiling(arccosh(sqrt(5)*m/2)/log(phi)) where phi is the golden ratio. An equivalent condition is A130255(m)=A130256(m). - Hieronymus Fischer, May 24 2007
a(n+1) = B^(n)(1), n >= 0, with compositions of Wythoff's complementary A(n):=A000201(n) and B(n)=A001950(n) sequences. See the W. Lang link under A135817 for the Wythoff representation of numbers (with A as 1 and B as 0 and the argument 1 omitted). E.g., 2=`0`, 5=`00`, 13=`000`, ..., in Wythoff code.
Bisection of the Fibonacci sequence into odd-indexed nonzero terms (1, 2, 5, 13, ...) and even-indexed terms (1, 3, 8, 21, ...) may be represented as row sums of companion triangles A140068 and A140069. - Gary W. Adamson, May 04 2008
a(n) is the number of partitions pi of [n] (in standard increasing form) such that Flatten[pi] is a (2-1-3)-avoiding permutation. Example: a(4)=13 counts all 15 partitions of [4] except 13/24 and 13/2/4. Here "standard increasing form" means the entries are increasing in each block and the blocks are arranged in increasing order of their first entries. Also number that avoid 3-1-2. - David Callan, Jul 22 2008
Let P be the partial sum operator, A000012: (1; 1,1; 1,1,1; ...) and A153463 = M, the partial sum & shift operator. It appears that beginning with any randomly taken sequence S(n), iterates of the operations M * S(n), -> M * ANS, -> P * ANS, etc. (or starting with P) will rapidly converge upon a two-sequence limit cycle of (1, 2, 5, 13, 34, ...) and (1, 1, 3, 8, 21, ...). - Gary W. Adamson, Dec 27 2008
Number of musical compositions of Rhythm-music over a time period of n-1 units. Example: a(4)=13; indeed, denoting by R a rest over a time period of 1 unit and by N[j] a note over a period of j units, we have (writing N for N[1]): NNN, NNR, NRN, RNN, NRR, RNR, RRN, RRR, N[2]R, RN[2], NN[2], N[2]N, N[3] (see the J. Groh reference, pp. 43-48). - Juergen K. Groh (juergen.groh(AT)lhsystems.com), Jan 17 2010
Given an infinite lower triangular matrix M with (1, 2, 3, ...) in every column but the leftmost column shifted upwards one row. Then (1, 2, 5, ...) = lim_{n->infinity} M^n. (Cf. A144257.) - Gary W. Adamson, Feb 18 2010
As a fraction: 8/71 = 0.112676 or 98/9701 = 0.010102051334... (fraction 9/71 or 99/9701 for sequence without initial term). 19/71 or 199/9701 for sequence in reverse. - Mark Dols, May 18 2010
For n >= 1, a(n) is the number of compositions (ordered integer partitions) of 2n-1 into an odd number of odd parts. O.g.f.: (x-x^3)/(1-3x^2+x^4) = A(A(x)) where A(x) = 1/(1-x)-1/(1-x^2).
For n > 0, determinant of the n X n tridiagonal matrix with 1's in the super and subdiagonals, (1,3,3,3,...) in the main diagonal, and the rest zeros. - Gary W. Adamson, Jun 27 2011
The Gi3 sums, see A180662, of the triangles A108299 and A065941 equal the terms of this sequence without a(0). - Johannes W. Meijer, Aug 14 2011
The number of permutations for which length equals reflection length. - Bridget Tenner, Feb 22 2012
Number of nonisomorphic graded posets with 0 and 1 and uniform Hasse graph of rank n+1, with exactly 2 elements of each rank between 0 and 1. (Uniform used in the sense of Retakh, Serconek and Wilson. Graded used in R. Stanley's sense that all maximal chains have the same length.)
HANKEL transform of sequence and the sequence omitting a(0) is the sequence A019590(n). This is the unique sequence with that property. - Michael Somos, May 03 2012
The number of Dyck paths of length 2n and height at most 3. - Ira M. Gessel, Aug 06 2012
Pisano period lengths: 1, 3, 4, 3, 10, 12, 8, 6, 12, 30, 5, 12, 14, 24, 20, 12, 18, 12, 9, 30, ... - R. J. Mathar, Aug 10 2012
Primes in the sequence are 2, 5, 13, 89, 233, 1597, 28657, ... (apparently A005478 without the 3). - R. J. Mathar, May 09 2013
a(n+1) is the sum of rising diagonal of the Pascal triangle written as a square - cf. comments in A085812. E.g., 13 = 1+5+6+1. - John Molokach, Sep 26 2013
a(n) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 1; 1, 1, 1; 0, 1, 1] or [1, 1, 1; 0, 1, 1; 1, 1, 1] or [1, 1, 0; 1, 1, 1; 1, 1, 1] or [1, 0, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
Except for the initial term, positive values of x (or y) satisfying x^2 - 3xy + y^2 + 1 = 0. - Colin Barker, Feb 04 2014
Except for the initial term, positive values of x (or y) satisfying x^2 - 18xy + y^2 + 64 = 0. - Colin Barker, Feb 16 2014
Positive values of x such that there is a y satisfying x^2 - xy - y^2 - 1 = 0. - Ralf Stephan, Jun 30 2014
a(n) is also the number of permutations simultaneously avoiding 231, 312 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
(1, a(n), a(n+1)), n >= 0, are Markoff triples (see A002559 and Robert G. Wilson v's Oct 05 2005 comment). In the Markoff tree they give one of the outer branches. Proof: a(n)*a(n+1) - 1 = A001906(2*n)^2 = (a(n+1) - a(n))^2 = a(n)^2 + a(n+1)^2 - 2*a(n)*a(n+1), thus 1^2 + a(n)^2 + a(n+1)^2 = 3*a(n)*a(n+1). - Wolfdieter Lang, Jan 30 2015
For n > 0, a(n) is the smallest positive integer not already in the sequence such that a(1) + a(2) + ... + a(n) is a Fibonacci number. - Derek Orr, Jun 01 2015
Number of vertices of degree n-2 (n >= 3) in all Fibonacci cubes, see Klavzar, Mollard, & Petkovsek. - Emeric Deutsch, Jun 22 2015
Except for the first term, this sequence can be generated by Corollary 1 (ii) of Azarian's paper in the references for this sequence. - Mohammad K. Azarian, Jul 02 2015
Precisely the numbers F(n)^k + F(n+1)^k that are also Fibonacci numbers with k > 1, see Luca & Oyono. - Charles R Greathouse IV, Aug 06 2015
a(n) = MA(n) - 2*(-1)^n where MA(n) is exactly the maximum area of a quadrilateral with lengths of sides in order L(n-2), L(n-2), F(n+1), F(n+1) for n > 1 and L(n)=A000032(n). - J. M. Bergot, Jan 28 2016
a(n) is the number of bargraphs of semiperimeter n+1 having no valleys (i.e., convex bargraphs). Equivalently, number of bargraphs of semiperimeter n+1 having exactly 1 peak. Example: a(5) = 34 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only the one corresponding to the composition [2,1,2] has a valley. - Emeric Deutsch, Aug 12 2016
Integers k such that the fractional part of k*phi is less than 1/k. See Byszewski link p. 2. - Michel Marcus, Dec 10 2016
Number of words of length n-1 over {0,1,2,3} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
With a(0) = 0 this is the Riordan transform with the Riordan matrix A097805 (of the associated type) of the Fibonacci sequence A000045. See a Feb 17 2017 comment on A097805. - Wolfdieter Lang, Feb 17 2017
Number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) < e(k). [Martinez and Savage, 2.12] - Eric M. Schmidt, Jul 17 2017
Number of permutations of [n] that avoid the patterns 321 and 2341. - Colin Defant, May 11 2018
The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j^2 and j divides 1+i^2. In fact, the pairs (a(n), a(n+1)), n > 0, are all the solutions. - Tomohiro Yamada, Dec 23 2018
Number of permutations in S_n whose principal order ideals in the Bruhat order are lattices (equivalently, modular, distributive, Boolean lattices). - Bridget Tenner, Jan 16 2020
From Wolfdieter Lang, Mar 30 2020: (Start)
a(n) is the upper left entry of the n-th power of the 2 X 2 tridiagonal matrix M_2 = Matrix([1,1], [1,2]) from A322602: a(n) = ((M_2)^n)[1,1].
Proof: (M_2)^2 = 3*M + 1_2 (with the 2 X 2 unit matrix 1_2) from the characteristic polynomial of M_2 (see a comment in A322602) and the Cayley-Hamilton theorem. The recurrence M^n = M*M^(n-1) leads to (M_n)^n = S(n, 3)*1_2 + S(n-a, 3)*(M - 3*1_2), for n >= 0, with S(n, 3) = F(2(n+1)) = A001906(n+1). Hence ((M_2)^n)[1,1] = S(n, 3) - 2*S(n-1, 3) = a(n) = F(2*n-1) = (1/(2*r+1))*r^(2*n-1)*(1 + (1/r^2)^(2*n-1)), with r = rho(5) = A001622 (golden ratio) (see the first Aug 31 2004 formula, using the recurrence of S(n, 3), and the Michael Somos Oct 28 2002 formula). This proves a conjecture of Gary W. Adamson in A322602.
The ratio a(n)/a(n-1) converges to r^2 = rho(5)^2 = A104457 for n -> infinity (see the a(n) formula in terms of r), which is one of the statements by Gary W. Adamson in A322602. (End)
a(n) is the number of ways to stack coins with a bottom row of n coins such that any coin not on the bottom row touches exactly two coins in the row below, and all the coins on any row are contiguous [Wilf, 2.12]. - Greg Dresden, Jun 29 2020
a(n) is the upper left entry of the (2*n)-th power of the 4 X 4 Jacobi matrix L with L(i,j)=1 if |i-j| = 1 and L(i,j)=0 otherwise. - Michael Shmoish, Aug 29 2020
All positive solutions of the indefinite binary quadratic F(1, -3, 1) := x^2 - 3*x*y + y^2, of discriminant 5, representing -1 (special Markov triples (1, y=x, z=y) if y <= z) are [x(n), y(n)] = [abs(F(2*n+1)), abs(F(2*n-1))], for n = -infinity..+infinity. (F(-n) = (-1)^(n+1)*F(n)). There is only this single family of proper solutions, and there are no improper solutions. [See also the Floor van Lamoen Nov 29 2001 comment, which uses this negative n, and my Jan 30 2015 comment.] - Wolfdieter Lang, Sep 23 2020
These are the denominators of the lower convergents to the golden ratio, tau; they are also the numerators of the upper convergents (viz. 1/1 < 3/2 < 8/5 < 21/13 < ... < tau < ... 13/8 < 5/3 < 2/1). - Clark Kimberling, Jan 02 2022
a(n+1) is the number of subgraphs of the path graph on n vertices. - Leen Droogendijk, Jun 17 2023
For n > 4, a(n+2) is the number of ways to tile this 3 x n "double-box" shape with squares and dominos (reflections or rotations are counted as distinct tilings). The double-box shape is made up of two horizontal strips of length n, connected by three vertical columns of length 3, and the center column can be located anywhere not touching the two outside columns.
_ _ _ _
|||_|||_|||_|||_|||
|| _ |_| _ _ ||
|||_|||_|||_|||_|||. - Greg Dresden and Ruishan Wu, Aug 25 2024
a(n+1) is the number of integer sequences a_1, ..., a_n such that for any number 1 <= k <= n, (a_1 + ... + a_k)^2 = a_1^3 + ... + a_k^3. - Yifan Xie, Dec 07 2024

Examples

			a(3) = 13: there are 14 ordered trees with 4 edges; all of them, except for the path with 4 edges, have height at most 3.
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 13,15.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
  • N. G. de Bruijn, D. E. Knuth, and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.
  • GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 92.
  • Jurgen Groh, Computerimprovisation mit Markoffketten und "kognitiven Algorithmen", Studienarbeit, Technische Hochschule Darmstadt, 1987.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 39.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. Stanley, Enumerative combinatorics, Vol. 1. Cambridge University Press, Cambridge, 1997, pp. 96-100.
  • H. S. Wilf, Generatingfunctionology, 3rd ed., A K Peters Ltd., Wellesley, MA, 2006, p. 41.

Crossrefs

Fibonacci A000045 = union of this sequence and A001906.
a(n)= A060920(n, 0).
Row 3 of array A094954.
Equals A001654(n+1) - A001654(n-1), n > 0.
A122367 is another version. Inverse sequences A130255 and A130256. Row sums of A140068, A152251, A153342, A179806, A179745, A213948.

Programs

  • GAP
    a:=[1,1];; for n in [3..10^2] do a[n]:=3*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Sep 27 2017
  • Haskell
    a001519 n = a001519_list !! n
    a001519_list = 1 : zipWith (-) (tail a001906_list) a001906_list
    -- Reinhard Zumkeller, Jan 11 2012
    a001519_list = 1 : f a000045_list where f (_:x:xs) = x : f xs
    -- Reinhard Zumkeller, Aug 09 2013
    
  • Magma
    [1] cat [(Lucas(2*n) - Fibonacci(2*n))/2: n in [1..50]]; // Vincenzo Librandi, Jul 02 2014
    
  • Maple
    A001519:=-(-1+z)/(1-3*z+z**2); # Simon Plouffe in his 1992 dissertation; gives sequence without an initial 1
    A001519 := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 3*procname(n-1)-procname(n-2) fi: end: seq(A001519(n), n=0..28); # Johannes W. Meijer, Aug 14 2011
  • Mathematica
    Fibonacci /@ (2Range[29] - 1) (* Robert G. Wilson v, Oct 05 2005 *)
    LinearRecurrence[{3, -1}, {1, 1}, 29] (* Robert G. Wilson v, Jun 28 2012 *)
    a[ n_] := With[{c = Sqrt[5]/2}, ChebyshevT[2 n - 1, c]/c]; (* Michael Somos, Jul 08 2014 *)
    CoefficientList[ Series[(1 - 2x)/(1 - 3x + x^2), {x, 0, 30}], x] (* Robert G. Wilson v, Feb 01 2015 *)
  • Maxima
    a[0]:1$ a[1]:1$ a[n]:=3*a[n-1]-a[n-2]$ makelist(a[n],n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n) = fibonacci(2*n - 1)}; /* Michael Somos, Jul 19 2003 */
    
  • PARI
    {a(n) = real( quadgen(5) ^ (2*n))}; /* Michael Somos, Jul 19 2003 */
    
  • PARI
    {a(n) = subst( poltchebi(n) + poltchebi(n - 1), x, 3/2) * 2/5}; /* Michael Somos, Jul 19 2003 */
    
  • Sage
    [lucas_number1(n,3,1)-lucas_number1(n-1,3,1) for n in range(30)] # Zerinvary Lajos, Apr 29 2009
    

Formula

G.f.: (1-2*x)/(1-3*x+x^2).
G.f.: 1 / (1 - x / (1 - x / (1 - x))). - Michael Somos, May 03 2012
a(n) = A001906(n+1) - 2*A001906(n).
a(n) = a(1-n) for all n in Z.
a(n+2) = (a(n+1)^2+1)/a(n) with a(1)=1, a(2)=2. - Benoit Cloitre, Aug 29 2002
a(n) = (phi^(2*n-1) + phi^(1-2*n))/sqrt(5) where phi=(1+sqrt(5))/2. - Michael Somos, Oct 28 2002
a(n) = A007598(n-1) + A007598(n) = A000045(n-1)^2 + A000045(n)^2 = F(n)^2 + F(n+1)^2. - Henry Bottomley, Feb 09 2001
a(n) = Sum_{k=0..n} binomial(n+k, 2*k). - Len Smiley, Dec 09 2001
a(n) ~ (1/5)*sqrt(5)*phi^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = Sum_{k=0..n} C(n, k)*F(k+1). - Benoit Cloitre, Sep 03 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 1)=a(n) (this comment is essentially the same as that of L. Smiley). - Benoit Cloitre, Nov 10 2002
a(n) = (1/2)*(3*a(n-1) + sqrt(5*a(n-1)^2-4)). - Benoit Cloitre, Apr 12 2003
Main diagonal of array defined by T(i, 1) = T(1, j) = 1, T(i, j) = max(T(i-1, j) + T(i-1, j-1); T(i-1, j-1) + T(i, j-1)). - Benoit Cloitre, Aug 05 2003
Hankel transform of A002212. E.g., Det([1, 1, 3;1, 3, 10;3, 10, 36]) = 5. - Philippe Deléham, Jan 25 2004
Solutions x > 0 to equation floor(x*r*floor(x/r)) = floor(x/r*floor(x*r)) when r=phi. - Benoit Cloitre, Feb 15 2004
a(n) = Sum_{i=0..n} binomial(n+i, n-i). - Jon Perry, Mar 08 2004
a(n) = S(n-1, 3) - S(n-2, 3) = T(2*n-1, sqrt(5)/2)/(sqrt(5)/2) with S(n, x) = U(n, x/2), resp. T(n, x), Chebyshev's polynomials of the second, resp. first kind. See triangle A049310, resp. A053120. - Wolfdieter Lang, Aug 31 2004
a(n) = ((-1)^(n-1))*S(2*(n-1), i), with the imaginary unit i and S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. - Wolfdieter Lang, Aug 31 2004
a(n) = Sum_{0<=i_1<=i_2<=n} binomial(i_2, i_1)*binomial(n, i_1+i_2). - Benoit Cloitre, Oct 14 2004
a(n) = L(n,3), where L is defined as in A108299; see also A002878 for L(n,-3). - Reinhard Zumkeller, Jun 01 2005
a(n) = a(n-1) + Sum_{i=0..n-1} a(i)*a(n) = F(2*n+1)*Sum_{i=0..n-1} a(i) = F(2*n). - Andras Erszegi (erszegi.andras(AT)chello.hu), Jun 28 2005
The i-th term of the sequence is the entry (1, 1) of the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 2)). - Simone Severini, Oct 15 2005
a(n-1) = (1/n)*Sum_{k=0..n} B(2*k)*F(2*n-2*k)*binomial(2*n, 2*k) where B(2*k) is the (2*k)-th Bernoulli number. - Benoit Cloitre, Nov 02 2005
a(n) = A055105(n,1) + A055105(n,2) + A055105(n,3) = A055106(n,1) + A055106(n,2). - Mike Zabrocki, Oct 24 2006
a(n) = (2/sqrt(5))*cosh((2n-1)*psi), where psi=log(phi) and phi=(1+sqrt(5))/2. - Hieronymus Fischer, Apr 24 2007
a(n) = (phi+1)^n - phi*A001906(n) with phi=(1+sqrt(5))/2. - Reinhard Zumkeller, Nov 22 2007
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3); a(n) = ((sqrt(5) + 5)/10)*(3/2 + sqrt(5)/2)^(n-2) + ((-sqrt(5) + 5)/10)*(3/2 - sqrt(5)/2)^(n-2). - Antonio Alberto Olivares, Mar 21 2008
a(n) = A147703(n,0). - Philippe Deléham, Nov 29 2008
Sum_{n>=0} atan(1/a(n)) = (3/4)*Pi. - Jaume Oliver Lafont, Feb 27 2009
With X,Y defined as X = ( F(n) F(n+1) ), Y = ( F(n+2) F(n+3) ), where F(n) is the n-th Fibonacci number (A000045), it follows a(n+2) = X.Y', where Y' is the transpose of Y (n >= 0). - K.V.Iyer, Apr 24 2009
From Gary Detlefs, Nov 22 2010: (Start)
a(n) = Fibonacci(2*n+2) mod Fibonacci(2*n), n > 1.
a(n) = (Fibonacci(n-1)^2 + Fibonacci(n)^2 + Fibonacci(2*n-1))/2. (End)
INVERT transform is A166444. First difference is A001906. Partial sums is A055588. Binomial transform is A093129. Binomial transform of A000045(n-1). - Michael Somos, May 03 2012
a(n) = 2^n*f(n;1/2), where f(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (see Witula et al. papers and comments in A000045). - Roman Witula, Jul 12 2012
a(n) = (Fibonacci(n+2)^2 + Fibonacci(n-3)^2)/5. - Gary Detlefs, Dec 14 2012
G.f.: 1 + x/( Q(0) - x ) where Q(k) = 1 - x/(x*k + 1 )/Q(k+1); (recursively defined continued fraction). - Sergei N. Gladkovskii, Feb 23 2013
G.f.: (1-2*x)*G(0)/(2-3*x), where G(k) = 1 + 1/( 1 - x*(5*k-9)/(x*(5*k-4) - 6/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 19 2013
G.f.: 1 + x*(1-x^2)*Q(0)/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + 2*x - x^2)/( x*(4*k+4 + 2*x - x^2 ) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Sep 11 2013
G.f.: Q(0,u), where u=x/(1-x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k+1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
Sum_{n>=2} 1/(a(n) - 1/a(n)) = 1. Compare with A001906, A007805 and A097843. - Peter Bala, Nov 29 2013
Let F(n) be the n-th Fibonacci number, A000045(n), and L(n) be the n-th Lucas number, A000032(n). Then for n > 0, a(n) = F(n)*L(n-1) + (-1)^n. - Charlie Marion, Jan 01 2014
a(n) = A238731(n,0). - Philippe Deléham, Mar 05 2014
1 = a(n)*a(n+2) - a(n+1)*a(n+1) for all n in Z. - Michael Somos, Jul 08 2014
a(n) = (L(2*n+4) + L(2*n-6))/25 for L(n)=A000032(n). - J. M. Bergot, Dec 30 2014
a(n) = (L(n-1)^2 + L(n)^2)/5 with L(n)=A000032(n). - J. M. Bergot, Dec 31 2014
a(n) = (L(n-2)^2 + L(n+1)^2)/10 with L(n)=A000032(n). - J. M. Bergot, Oct 23 2015
a(n) = 3*F(n-1)^2 + F(n-3)*F(n) - 2*(-1)^n. - J. M. Bergot, Feb 17 2016
a(n) = (F(n-1)*L(n) + F(n)*L(n-1))/2 = (A081714(n-1) + A128534(n))/2. - J. M. Bergot, Mar 22 2016
E.g.f.: (2*exp(sqrt(5)*x) + 3 + sqrt(5))*exp(-x*(sqrt(5)-3)/2)/(5 + sqrt(5)). - Ilya Gutkovskiy, Jul 04 2016
a(n) = ((M_2)^n)[1,1] = S(n, 3) - 2*S(n-1, 3), with the 2 X 2 tridiagonal matrix M_2 = Matrix([1,1], [1,2]) from A322602. For a proof see the Mar 30 2020 comment above. - Wolfdieter Lang, Mar 30 2020
Sum_{n>=1} 1/a(n) = A153387. - Amiram Eldar, Oct 05 2020
a(n+1) = Product_{k=1..n} (1 + 4*cos(2*Pi*k/(2*n + 1))^2). Special case of A099390. - Greg Dresden, Oct 16 2021
a(n+1) = 4^(n+1)*Sum_{k >= n} binomial(2*k,2*n)*(1/5)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n) = cosh((2*n-1)*arcsinh(1/2))/sqrt(5/4). - Peter Luschny, May 21 2022
From J. M. Bergot, May 27 2022: (Start)
a(n) = F(n-1)*L(n) - (-1)^n where L(n)=A000032(n) and F(n)=A000045(n).
a(n) = (L(n-1)^2 + L(n-1)*L(n+1))/5 + (-1)^n.
a(n) = 2*(area of a triangle with vertices at (L(n-2), L(n-1)), (F(n), F(n-1)), (L(n), L(n+1))) + 5*(-1)^n for n > 2. (End)
a(n) = A059929(n-1)+A059929(n-2), n>1. - R. J. Mathar, Jul 09 2024

Extensions

Entry revised by N. J. A. Sloane, Aug 24 2006, May 13 2008

A027193 Number of partitions of n into an odd number of parts.

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 5, 8, 10, 16, 20, 29, 37, 52, 66, 90, 113, 151, 190, 248, 310, 400, 497, 632, 782, 985, 1212, 1512, 1851, 2291, 2793, 3431, 4163, 5084, 6142, 7456, 8972, 10836, 12989, 15613, 18646, 22316, 26561, 31659, 37556, 44601, 52743, 62416, 73593, 86809, 102064, 120025, 140736
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n in which greatest part is odd.
Number of partitions of n+1 into an even number of parts, the least being 1. Example: a(5)=4 because we have [5,1], [3,1,1,1], [2,1,1] and [1,1,1,1,1,1].
Also number of partitions of n+1 such that the largest part is even and occurs only once. Example: a(5)=4 because we have [6], [4,2], [4,1,1] and [2,1,1,1,1]. - Emeric Deutsch, Apr 05 2006
Also the number of partitions of n such that the number of odd parts and the number of even parts have opposite parities. Example: a(8)=10 is a count of these partitions: 8, 611, 521, 431, 422, 41111, 332, 32111, 22211, 2111111. - Clark Kimberling, Feb 01 2014, corrected Jan 06 2021
In Chaves 2011 see page 38 equation (3.20). - Michael Somos, Dec 28 2014
Suppose that c(0) = 1, that c(1), c(2), ... are indeterminates, that d(0) = 1, and that d(n) = -c(n) - c(n-1)*d(1) - ... - c(0)*d(n-1). When d(n) is expanded as a polynomial in c(1), c(2),..,c(n), the terms are of the form H*c(i_1)*c(i_2)*...*c(i_k). Let P(n) = [c(i_1), c(i_2), ..., c(i_k)], a partition of n. Then H is negative if P has an odd number of parts, and H is positive if P has an even number of parts. That is, d(n) has A027193(n) negative coefficients, A027187(n) positive coefficients, and A000041 terms. The maximal coefficient in d(n), in absolute value, is A102462(n). - Clark Kimberling, Dec 15 2016

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 5*x^6 + 8*x^7 + 10*x^8 + 16*x^9 + 20*x^10 + ...
From _Gus Wiseman_, Feb 11 2021: (Start)
The a(1) = 1 through a(8) = 10 partitions into an odd number of parts are the following. The Heinz numbers of these partitions are given by A026424.
  (1)  (2)  (3)    (4)    (5)      (6)      (7)        (8)
            (111)  (211)  (221)    (222)    (322)      (332)
                          (311)    (321)    (331)      (422)
                          (11111)  (411)    (421)      (431)
                                   (21111)  (511)      (521)
                                            (22111)    (611)
                                            (31111)    (22211)
                                            (1111111)  (32111)
                                                       (41111)
                                                       (2111111)
The a(1) = 1 through a(8) = 10 partitions whose greatest part is odd are the following. The Heinz numbers of these partitions are given by A244991.
  (1)  (11)  (3)    (31)    (5)      (33)      (7)        (53)
             (111)  (1111)  (32)     (51)      (52)       (71)
                            (311)    (321)     (322)      (332)
                            (11111)  (3111)    (331)      (521)
                                     (111111)  (511)      (3221)
                                               (3211)     (3311)
                                               (31111)    (5111)
                                               (1111111)  (32111)
                                                          (311111)
                                                          (11111111)
(End)
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 39, Example 7.

Crossrefs

The Heinz numbers of these partitions are A026424 or A244991.
The even-length version is A027187.
The case of odd sum as well as length is A160786, ranked by A340931.
The case of odd maximum as well as length is A340385.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions of odd positive rank.

Programs

  • Maple
    g:=sum(x^(2*k)/product(1-x^j,j=1..2*k-1),k=1..40): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=1..45); # Emeric Deutsch, Apr 05 2006
  • Mathematica
    nn=40;CoefficientList[Series[ Sum[x^(2j+1)Product[1/(1- x^i),{i,1,2j+1}],{j,0,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Dec 01 2012 *)
    a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n], OddQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
    a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n], OddQ[ First@#] &]]; (* Michael Somos, Dec 28 2014 *)
    a[ n_] := If[ n < 0, 0, Length@Select[ IntegerPartitions[ n + 1], #[[-1]] == 1 && EvenQ[ Length@#] &]]; (* Michael Somos, Dec 28 2014 *)
    a[ n_] := If[ n < 1, 0, Length@Select[ IntegerPartitions[ n + 1], EvenQ[ First@#] && (Length[#] < 2 || #[[1]] != #[[2]]) &]]; (* Michael Somos, Dec 28 2014 *)
  • PARI
    {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, if( k%2, x^k / prod( j=1, k, 1 - x^j, 1 + x * O(x^(n-k)) ))), n))}; /* Michael Somos, Jul 24 2012 */
    
  • PARI
    q='q+O('q^66); concat([0], Vec( (1/eta(q)-eta(q)/eta(q^2))/2 ) ) \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = (A000041(n) - (-1)^n*A000700(n)) / 2.
For g.f. see under A027187.
G.f.: Sum(k>=1, x^(2*k-1)/Product(j=1..2*k-1, 1-x^j ) ). - Emeric Deutsch, Apr 05 2006
G.f.: - Sum(k>=1, (-x)^(k^2)) / Product(k>=1, 1-x^k ). - Joerg Arndt, Feb 02 2014
G.f.: Sum(k>=1, x^(k*(2*k-1)) / Product(j=1..2*k, 1-x^j)). - Michael Somos, Dec 28 2014
a(2*n) = A000701(2*n), a(2*n-1) = A046682(2*n-1); a(n) = A000041(n)-A027187(n). - Reinhard Zumkeller, Apr 22 2006

A067659 Number of partitions of n into distinct parts such that number of parts is odd.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 11, 14, 16, 19, 23, 27, 32, 38, 44, 52, 61, 71, 82, 96, 111, 128, 148, 170, 195, 224, 256, 293, 334, 380, 432, 491, 557, 630, 713, 805, 908, 1024, 1152, 1295, 1455, 1632, 1829, 2048, 2291, 2560, 2859, 3189, 3554, 3958, 4404
Offset: 0

Views

Author

Naohiro Nomoto, Feb 23 2002

Keywords

Comments

Ramanujan theta functions: phi(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Examples

			From _Gus Wiseman_, Jan 09 2021: (Start)
The a(5) = 1 through a(15) = 14 partitions (A-F = 10..15):
  5   6     7     8     9     A     B     C     D     E     F
      321   421   431   432   532   542   543   643   653   654
                  521   531   541   632   642   652   743   753
                        621   631   641   651   742   752   762
                              721   731   732   751   761   843
                                    821   741   832   842   852
                                          831   841   851   861
                                          921   931   932   942
                                                A21   941   951
                                                      A31   A32
                                                      B21   A41
                                                            B31
                                                            C21
                                                            54321
(End)
		

Crossrefs

Dominates A000009.
Numbers with these strict partitions as binary indices are A000069.
The non-strict version is A027193.
The Heinz numbers of these partitions are A030059.
The even version is A067661.
The version for rank is A117193, with non-strict version A101707.
The ordered version is A332304, with non-strict version A166444.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A174726 counts ordered factorizations of odd length.
- A339890 counts factorizations of odd length.
A008289 counts strict partitions by sum and length.
A026804 counts partitions whose least part is odd, with strict case A026832.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
          `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Apr 01 2014
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n > i*(i + 1)/2, 0, If[n == 0, t, Sum[b[n - i*j, i - 1, Abs[t - j]], {j, 0, Min[n/i, 1]}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
    CoefficientList[Normal[Series[(QPochhammer[-x, x]-QPochhammer[x])/2, {x, 0, 100}]], x] (* Andrey Zabolotskiy, Apr 12 2017 *)
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,30}] (* Gus Wiseman, Jan 09 2021 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)/eta(x+A) - eta(x+A))/2, n))} /* Michael Somos, Feb 14 2006 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+2*sqrtint(N);
    gf=sum(n=1,S, (n%2!=0) * q^(n*(n+1)/2) / prod(k=1,n, 1-q^k ) );
    concat( [0], Vec(gf) )  /* Joerg Arndt, Oct 20 2012 */
    
  • PARI
    N=66;  q='q+O('q^N);  S=1+sqrtint(N);
    gf=sum(n=1, S, q^(2*n^2-n) / prod(k=1, 2*n-1, 1-q^k ) );
    concat( [0], Vec(gf) )  \\ Joerg Arndt, Apr 01 2014

Formula

For g.f. see under A067661.
a(n) = (A000009(n)-A010815(n))/2. - Vladeta Jovovic, Feb 24 2002
Expansion of (1-phi(-q))/(2*chi(-q)) in powers of q where phi(),chi() are Ramanujan theta functions. - Michael Somos, Feb 14 2006
G.f.: sum(n>=1, q^(2*n^2-n) / prod(k=1..2*n-1, 1-q^k ) ). [Joerg Arndt, Apr 01 2014]
a(n) = A067661(n) - A010815(n). - Andrey Zabolotskiy, Apr 12 2017
A000009(n) = a(n) + A067661(n). - Gus Wiseman, Jan 09 2021

A092921 Array F(k, n) read by descending antidiagonals: k-generalized Fibonacci numbers in row k >= 1, starting (0, 1, 1, ...), for column n >= 0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 2, 1, 1, 0, 1, 5, 4, 2, 1, 1, 0, 1, 8, 7, 4, 2, 1, 1, 0, 1, 13, 13, 8, 4, 2, 1, 1, 0, 1, 21, 24, 15, 8, 4, 2, 1, 1, 0, 1, 34, 44, 29, 16, 8, 4, 2, 1, 1, 0, 1, 55, 81, 56, 31, 16, 8, 4, 2, 1, 1, 0, 1, 89, 149, 108, 61, 32, 16, 8, 4, 2, 1, 1, 0
Offset: 0

Views

Author

Ralf Stephan, Apr 17 2004

Keywords

Comments

For all k >= 1, the k-generalized Fibonacci number F(k,n) satisfies the recurrence obtained by adding more terms to the recurrence of the Fibonacci numbers.
The number of tilings of an 1 X n rectangle with tiles of size 1 X 1, 1 X 2, ..., 1 X k is F(k,n).
T(k,n) is the number of 0-balanced ordered trees with n edges and height k (height is the number of edges from root to a leaf). - Emeric Deutsch, Jan 19 2007
Brlek et al. (2006) call this table "number of psp-polyominoes with flat bottom". - N. J. A. Sloane, Oct 30 2018

Examples

			From _Peter Luschny_, Apr 03 2021: (Start)
Array begins:
                n = 0  1  2  3  4  5   6   7   8    9   10
  -------------------------------------------------------------
  [k=1, mononacci ] 0, 1, 1, 1, 1, 1,  1,  1,  1,   1,   1, ...
  [k=2, Fibonacci ] 0, 1, 1, 2, 3, 5,  8, 13, 21,  34,  55, ...
  [k=3, tribonacci] 0, 1, 1, 2, 4, 7, 13, 24, 44,  81, 149, ...
  [k=4, tetranacci] 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, ...
  [k=5, pentanacci] 0, 1, 1, 2, 4, 8, 16, 31, 61, 120, 236, ...
  [k=6]             0, 1, 1, 2, 4, 8, 16, 32, 63, 125, 248, ...
  [k=7]             0, 1, 1, 2, 4, 8, 16, 32, 64, 127, 253, ...
  [k=8]             0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 255, ...
  [k=9]             0, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ...
Note that the first parameter in F(k, n) refers to rows, and the second parameter refers to columns. This is always the case. Only the usual naming convention for the indices is not adhered to because it is common to call the row sequences k-bonacci numbers. (End)
.
From _Peter Luschny_, Aug 12 2015: (Start)
As a triangle counting compositions of n with largest part k:
  [n\k]| [0][1] [2] [3] [4][5][6][7][8][9]
   [0] | [0]
   [1] | [0, 1]
   [2] | [0, 1,  1]
   [3] | [0, 1,  1,  1]
   [4] | [0, 1,  2,  1,  1]
   [5] | [0, 1,  3,  2,  1, 1]
   [6] | [0, 1,  5,  4,  2, 1, 1]
   [7] | [0, 1,  8,  7,  4, 2, 1, 1]
   [8] | [0, 1, 13, 13,  8, 4, 2, 1, 1]
   [9] | [0, 1, 21, 24, 15, 8, 4, 2, 1, 1]
For example for n=7 and k=3 we have the 7 compositions [3, 3, 1], [3, 2, 2], [3, 2, 1, 1], [3, 1, 3], [3, 1, 2, 1], [3, 1, 1, 2], [3, 1, 1, 1, 1]. (End)
		

Crossrefs

Columns converge to A166444: each column n converges to A166444(n) = 2^(n-2).
Rows 1-8 are (shifted) A057427, A000045, A000073, A000078, A001591, A001592, A066178, A079262.
Essentially a reflected version of A048887.
See A048004 and A126198 for closely related arrays.
Cf. A066099.

Programs

  • Maple
    F:= proc(k, n) option remember; `if`(n<2, n,
          add(F(k, n-j), j=1..min(k,n)))
        end:
    seq(seq(F(k, d+1-k), k=1..d+1), d=0..12);  # Alois P. Heinz, Nov 02 2016
    # Based on the above function:
    Arow := (k, len) -> seq(F(k, j), j = 0..len):
    seq(lprint(Arow(k, 14)), k = 1..10); # Peter Luschny, Apr 03 2021
  • Mathematica
    F[k_, n_] := F[k, n] = If[n<2, n, Sum[F[k, n-j], {j, 1, Min[k, n]}]];
    Table[F[k, d+1-k], {d, 0, 12}, {k, 1, d+1}] // Flatten (* Jean-François Alcover, Jan 11 2017, translated from Maple *)
  • PARI
    F(k,n)=if(n<2,if(n<1,0,1),sum(i=1,k,F(k,n-i)))
    
  • PARI
    T(m,n)=!!n*(matrix(m,m,i,j,j==i+1||i==m)^(n+m-2))[1,m] \\ M. F. Hasler, Apr 20 2018
    
  • PARI
    F(k,n) = if(n==0,0, polcoeff(lift(Mod('x, Pol(vector(k+1,i, if(i==1,1,-1))))^(n+k-2)), k-1)); \\ Kevin Ryde, Jun 05 2020
    
  • Sage
    # As a triangle of compositions of n with largest part k.
    C = lambda n,k: Compositions(n, max_part=k, inner=[k]).cardinality()
    for n in (0..9): [C(n,k) for k in (0..n)] # Peter Luschny, Aug 12 2015

Formula

F(k,n) = F(k,n-1) + F(k,n-2) + ... + F(k,n-k); F(k,1) = 1 and F(k,n) = 0 for n <= 0.
G.f.: x/(1-Sum_{i=1..k} x^i).
F(k,n) = 2^(n-2) for 1 < n <= k+1. - M. F. Hasler, Apr 20 2018
F(k,n) = Sum_{j=0..floor(n/(k+1))} (-1)^j*((n - j*k) + j + delta(n,0))/(2*(n - j*k) + delta(n,0))*binomial(n - j*k, j)*2^(n-j*(k+1)), where delta denotes the Kronecker delta (see Corollary 3.2 in Parks and Wills). - Stefano Spezia, Aug 06 2022

A174726 a(n) = (A002033(n-1) - A008683(n))/2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 2, 4, 1, 7, 1, 8, 1, 1, 1, 13, 1, 1, 1, 10, 1, 7, 1, 4, 4, 1, 1, 24, 1, 4, 1, 4, 1, 10, 1, 10, 1, 1, 1, 22, 1, 1, 4, 16, 1, 7, 1, 4, 1, 7, 1, 38, 1, 1, 4, 4, 1
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

a(n) is the number of permutation matrices with a negative contribution to the determinant that is the Möbius function. See A174725 for how the determinant is defined. - Mats Granvik, May 26 2017
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an odd number of factors > 1. The unordered case is A339890. For example, the a(n) factorizations for n = 8, 12, 24, 30, 32, 36 are:
(8) (12) (24) (30) (32) (36)
(2*2*2) (2*2*3) (2*2*6) (2*3*5) (2*2*8) (2*2*9)
(2*3*2) (2*3*4) (2*5*3) (2*4*4) (2*3*6)
(3*2*2) (2*4*3) (3*2*5) (2*8*2) (2*6*3)
(2*6*2) (3*5*2) (4*2*4) (2*9*2)
(3*2*4) (5*2*3) (4*4*2) (3*2*6)
(3*4*2) (5*3*2) (8*2*2) (3*3*4)
(4*2*3) (2*2*2*2*2) (3*4*3)
(4*3*2) (3*6*2)
(6*2*2) (4*3*3)
(6*2*3)
(6*3*2)
(9*2*2)
(End)

Crossrefs

The even version is A174725.
The unordered case is A339890, with even version A339846.
A001055 counts factorizations, with strict case A045778.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A332304 counts strict compositions of odd length.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],OddQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (A002033(n-1) - A008683(n))/2. - Mats Granvik, May 26 2017
For n > 0, a(n) + A174725(n) = A074206(n). - Gus Wiseman, Jan 04 2021

A340385 Number of integer partitions of n into an odd number of parts, the greatest of which is odd.

Original entry on oeis.org

1, 0, 2, 0, 3, 1, 6, 3, 10, 7, 18, 15, 30, 28, 51, 50, 82, 87, 134, 145, 211, 235, 331, 375, 510, 586, 779, 901, 1172, 1366, 1750, 2045, 2581, 3026, 3778, 4433, 5476, 6430, 7878, 9246, 11240, 13189, 15931, 18670, 22417, 26242, 31349, 36646, 43567, 50854
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2021

Keywords

Examples

			The a(3) = 2 through a(10) = 7 partitions:
  3     5       321   7         332     9           532
  111   311           322       521     333         541
        11111         331       32111   522         721
                      511               531         32221
                      31111             711         33211
                      1111111           32211       52111
                                        33111       3211111
                                        51111
                                        3111111
                                        111111111
		

Crossrefs

Partitions of odd length are counted by A027193, ranked by A026424.
Partitions with odd maximum are counted by A027193, ranked by A244991.
The Heinz numbers of these partitions are given by A340386.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.
A000009 counts partitions into odd parts, ranked by A066208.
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers, ranked by A300063.
A072233 counts partitions by sum and length.
A101707 counts partitions with odd rank.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A340101 counts factorizations into odd factors.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]*Max[#]]&]],{n,30}]

A332304 Number of compositions (ordered partitions) of n into distinct parts such that number of parts is odd.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 7, 7, 13, 19, 25, 31, 43, 49, 61, 193, 205, 337, 475, 727, 985, 1363, 1741, 2359, 2983, 3841, 4705, 5929, 12193, 13777, 20527, 27631, 39901, 52651, 75601, 99151, 132907, 172297, 227053, 287569, 373525, 465241, 587563, 725839, 899761, 1457683
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 09 2020

Keywords

Examples

			a(6) = 7 because we have [6], [3, 2, 1], [3, 1, 2], [2, 3, 1], [2, 1, 3], [1, 3, 2] and [1, 2, 3].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p) option remember; `if`(i*(i+1)/2 b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Feb 09 2020
  • Mathematica
    nmax = 45; CoefficientList[Series[Sum[(2 k - 1)! x^(k (2 k - 1))/Product[1 - x^j, {j, 1, 2 k - 1}], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=1} (2*k - 1)! * x^(k*(2*k - 1)) / Product_{j=1..2*k-1} (1 - x^j).
a(n) = A032020(n) - A332305(n).

A344855 Number T(n,k) of permutations of [n] having k cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 4, 11, 6, 1, 0, 8, 40, 35, 10, 1, 0, 16, 148, 195, 85, 15, 1, 0, 32, 560, 1078, 665, 175, 21, 1, 0, 64, 2160, 5992, 5033, 1820, 322, 28, 1, 0, 128, 8448, 33632, 37632, 17913, 4284, 546, 36, 1, 0, 256, 33344, 190800, 280760, 171465, 52941, 9030, 870, 45, 1
Offset: 0

Views

Author

Alois P. Heinz, May 30 2021

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+1)/2 = A000217(k).

Examples

			T(4,1) = 4: (1234), (1243), (1423), (1432).
Triangle T(n,k) begins:
  1;
  0,  1;
  0,  1,    1;
  0,  2,    3,    1;
  0,  4,   11,    6,    1;
  0,  8,   40,   35,   10,    1;
  0, 16,  148,  195,   85,   15,   1;
  0, 32,  560, 1078,  665,  175,  21,  1;
  0, 64, 2160, 5992, 5033, 1820, 322, 28, 1;
  ...
		

Crossrefs

Row sums give A187251.
Main diagonal gives A000012, lower diagonal gives A000217, second lower diagonal gives A000914.
T(n+1,n) gives A000217.
T(n+2,n) gives A000914.
T(2n,n) gives A345342.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
          b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
    seq(T(n), n=0..12);
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x*b[n-j]*
         Binomial[n-1, j-1]*Ceiling[2^(j-2)]], {j, n}]];
    T[n_] := CoefficientList[b[n], x];
    Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)

Formula

Sum_{k=1..n} k * T(n,k) = A345341(n).
For fixed k, T(n,k) ~ (2*k)^n / (4^k * k!). - Vaclav Kotesovec, Jul 15 2021

A089677 Exponential convolution of A000670(n), with A000670(0)=0, with the sequence of all ones alternating in sign.

Original entry on oeis.org

0, 1, 1, 7, 37, 271, 2341, 23647, 272917, 3543631, 51123781, 811316287, 14045783797, 263429174191, 5320671485221, 115141595488927, 2657827340990677, 65185383514567951, 1692767331628422661, 46400793659664205567, 1338843898122192101557
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Jan 03 2004

Keywords

Comments

Stirling transform of A005212(n)=[1,0,6,0,120,0,5040,...] is a(n)=[1,1,7,37,271,...]. - Michael Somos, Mar 04 2004
Occurs also as first column of a matrix-inversion occurring in a sum-of-like-powers problem. Consider the problem for any fixed natural number m>2 of finding solutions to sum(k=1,n,k^m) = (k+1)^m. Erdos conjectured that there are no solutions for n,m>2. Let D be the matrix of differences of D[m,n] := sum(k=1,n,k^m) - (k+1)^m. Then the generating functions for the rows of this matrix D constitute a set of polynomials in n (for varying n along columns) and the m-th polynomial defining the m-th row. Let GF_D be the matrix of the coefficients of this set of polynomials. Then the present sequence is the (unsigned) second column of GF_D^-1. - Gottfried Helms, Apr 01 2007

Examples

			From _Gus Wiseman_, Jan 06 2021: (Start)
a(n) is the number of ordered set partitions of {1..n} into an odd number of blocks. The a(1) = 1 through a(3) = 7 ordered set partitions are:
  {{1}}  {{1,2}}  {{1,2,3}}
                  {{1},{2},{3}}
                  {{1},{3},{2}}
                  {{2},{1},{3}}
                  {{2},{3},{1}}
                  {{3},{1},{2}}
                  {{3},{2},{1}}
(End)
		

Crossrefs

Ordered set partitions are counted by A000670.
The case of (unordered) set partitions is A024429.
The complement (even-length ordered set partitions) is counted by A052841.
A058695 counts partitions of odd numbers, ranked by A300063.
A101707 counts partitions of odd positive rank.
A160786 counts odd-length partitions of odd numbers, ranked by A300272.
A340102 counts odd-length factorizations into odd factors.
A340692 counts partitions of odd rank.
Other cases of odd length:
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A166444 counts compositions of odd length.
- A174726 counts ordered factorizations of odd length.
- A332304 counts strict compositions of odd length.
- A339890 counts factorizations of odd length.

Programs

  • Maple
    h := n -> add(combinat:-eulerian1(n,k)*2^k,k=0..n):
    a := n -> (h(n)-(-1)^n)/2: seq(a(n),n=0..20); # Peter Luschny, Jul 09 2015
  • Mathematica
    Table[Sum[Binomial[n, k](-1)^(n-k)Sum[i! StirlingS2[k, i], {i, 1, k}], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst(y/(1-y^2),y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(2*m+1)!*x^(2*m+1)/prod(k=1,2*m+1,1-k*x+x*O(x^n))),n)} /* Paul D. Hanna, Jul 20 2011 */
    
  • Sage
    def A089677_list(len):  # with a(0)=1
        e, r = [1], [1]
        for i in (1..len-1):
            for k in range(i-1, -1, -1): e[k] = (e[k]*i)//(i-k)
            r.append(-sum(e[j]*(-1)^(i-j) for j in (0..i-1)))
            e.append(sum(e))
        return r
    A089677_list(21) # Peter Luschny, Jul 09 2015

Formula

E.g.f.: (exp(x)-1)/(exp(x)*(2-exp(x))).
O.g.f.: Sum_{n>=0} (2*n+1)! * x^(2*n+1) / Product_{k=1..2*n+1} (1-k*x). - Paul D. Hanna, Jul 20 2011
a(n)=Sum(Binomial(n, k)(-1)^(n-k)Sum(i! Stirling2(k, i), i=1, ..k), k=0, .., n).
a(n) = (A000670(n)-(-1)^n)/2. - Vladeta Jovovic, Jan 17 2005
a(n) ~ n! / (4*(log(2))^(n+1)). - Vaclav Kotesovec, Feb 25 2014
a(n) = Sum_{k=0..floor(n/2)} (2*k+1)!*Stirling2(n, 2*k+1). - Peter Luschny, Sep 20 2015
Showing 1-10 of 22 results. Next