cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A166552 a(n) = 3*a(n-2) for n > 2; a(1) = 1; a(2) = 4.

Original entry on oeis.org

1, 4, 3, 12, 9, 36, 27, 108, 81, 324, 243, 972, 729, 2916, 2187, 8748, 6561, 26244, 19683, 78732, 59049, 236196, 177147, 708588, 531441, 2125764, 1594323, 6377292, 4782969, 19131876, 14348907, 57395628, 43046721, 172186884, 129140163
Offset: 1

Views

Author

Klaus Brockhaus, Oct 16 2009

Keywords

Comments

Interleaving of A000244 (powers of 3) and 4*A000244.
a(n) = A074324(n); A074324 has the additional term a(0)=1.
First differences are in A162852.
Second binomial transform is A054491. Fourth binomial transform is A153594.

Crossrefs

Equals A162766 preceded by 1.
Cf. A000244 (powers of 3), A074324, A162852, A054491, A153594.

Programs

  • Magma
    [ n le 2 select 3*n-2 else 3*Self(n-2): n in [1..35] ];
    
  • Mathematica
    LinearRecurrence[{0, 3}, {1, 4}, 50] (* G. C. Greubel, May 17 2016 *)
  • PARI
    a(n)=3^(n\2)*(4/3)^!bittest(n,0) \\ M. F. Hasler, Dec 03 2014

Formula

a(n) = (7+(-1)^n)*3^(1/4*(2*n-5+(-1)^n))/2.
G.f.: x*(1+4*x)/(1-3*x^2).
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 3^floor((n-1)/2)*4^(1-n%2). - M. F. Hasler, Dec 03 2014
E.g.f.: (sqrt(3)*sinh(sqrt(3)*x) + 4*cosh(sqrt(3)*x) - 4)/3. - Ilya Gutkovskiy, May 17 2016