A075153
Trajectory of 318 under the Reverse and Add! operation carried out in base 4, written in base 10.
Original entry on oeis.org
318, 1071, 5040, 5985, 10710, 20400, 24225, 43350, 81600, 85425, 165750, 327360, 342705, 664950, 1309440, 1324785, 2629110, 5241600, 5303025, 10524150, 20966400, 21027825, 41973750, 83880960, 84126705, 167925750, 335523840
Offset: 0
318 (decimal) = 10332 -> 10332 + 23301 = 100233 = 1071 (decimal).
Cf.
A058042 (trajectory of binary number 10110 (decimal 22)),
A061561 (
A058042 written in base 10),
A066450 (conjectured minimal k so that the trajectory of k in base n does not lead to a palindrome).
Cf.
A075253 (trajectory of 77 in base 2),
A075420 (trajectory of n in base 4 (presumably) does not reach a palindrome),
A075421 (trajectory of n in base 4 (presumably) does not reach a palindrome and (presumably) does not join the trajectory of any term m < n),
A075299 (trajectory of 290 in base 4),
A075466 (trajectory of 266718 in base 4),
A075467 (trajectory of 270798 in base 4),
A076247 (trajectory of 1059774 in base 4),
A076248 (trajectory of 1059831 in base 4),
A091675 (trajectory of n in base 4 (presumably) does not join the trajectory of any m < n).
-
trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(318, 26, 4);
-
NestWhileList[# + IntegerReverse[#, 4] &, 318, # !=
IntegerReverse[#, 4] &, 1, 26] (* Robert Price, Oct 18 2019 *)
-
{m=318; stop=29; c=0; while(c0,d=divrem(k,4); k=d[1]; rev=4*rev+d[2]); c++; m=m+rev)}
Two comments added, g.f. edited, MAGMA program and cross-references added by
Klaus Brockhaus, Oct 26 2009
A166912
a(n) = 20*a(n-1) - 64*a(n-2) - 225 for n > 2; a(0) = 106, a(1) = 8075, a(2) = 114235.
Original entry on oeis.org
106, 8075, 114235, 1767675, 28042235, 447713275, 7159562235, 114537594875, 1832539914235, 29320392212475, 469125289738235, 7506000693166075, 120095995320074235, 1921535862038855675, 30744573540292362235
Offset: 0
-
Join[{106},LinearRecurrence[{21,-84,64},{8075,114235,1767675},20]] (* Harvey P. Dale, Jun 07 2012 *)
-
m=15; v=concat([106, 8075, 114235], vector(m-3)); for(n=4, m, v[n]=20*v[n-1]-64*v[n-2]-225); v
A166913
a(n) = 20*a(n-1) - 64*a(n-2) - 150 for n > 2; a(0) = 357, a(1) = 14450, a(2) = 221650.
Original entry on oeis.org
357, 14450, 221650, 3508050, 55975250, 894989650, 14317376850, 229068199250, 3665051866450, 58640672576850, 938250132084050, 15011999596762450, 240191983481869650, 3843071695444596050, 61489146966052263250
Offset: 0
-
Join[{357},LinearRecurrence[{21,-84,64},{14450,221650,3508050},20]] (* Harvey P. Dale, Jun 18 2014 *)
-
m=15; v=concat([357, 14450, 221650], vector(m-3)); for(n=4, m, v[n]=20*v[n-1]-64*v[n-2]-150); v
A166915
a(n) = 20*a(n-1) - 64*a(n-2) - 45 for n>1; a(0) = 399, a(1) = 5695.
Original entry on oeis.org
399, 5695, 88319, 1401855, 22384639, 357974015, 5726863359, 91626930175, 1466019348479, 23456263438335, 375300030463999, 6004799749226495, 96076793034833919, 1537228676746182655, 24595658780694282239
Offset: 0
-
LinearRecurrence[{21, -84, 64}, {399, 5695, 88319}, 50] (* G. C. Greubel, May 28 2016 *)
-
m=15; v=concat([399, 5695], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]-45); v
A166916
a(n) = 20*a(n-1) - 64*a(n-2) - 15 for n > 1; a(0) = 357, a(1) = 5525.
Original entry on oeis.org
357, 5525, 87637, 1399125, 22373717, 357930325, 5726688597, 91626231125, 1466016552277, 23456252253525, 375299985724757, 6004799570269525, 96076792319006037, 1537228673882871125, 24595658769241036117
Offset: 0
-
LinearRecurrence[{21,-84,64},{357,5525,87637},20] (* Harvey P. Dale, Sep 24 2012 *)
-
m=15; v=concat([357, 5525], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]-15); v
A166914
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 21, a(1) = 340.
Original entry on oeis.org
21, 340, 5456, 87360, 1398016, 22369280, 357912576, 5726617600, 91625947136, 1466015416320, 23456247709696, 375299967549440, 6004799497568256, 96076792028200960, 1537228672719650816, 24595658764588154880
Offset: 0
-
[Binomial(4^(n+3), 2)/96: n in [0..30]]; // G. C. Greubel, Oct 02 2024
-
CoefficientList[Series[(21-80x)/((1-4x)(1-16x)),{x,0,20}],x] (* or *) LinearRecurrence[{20,-64},{21,340},20] (* Harvey P. Dale, Feb 23 2011 & Mar 30 2012 *)
-
{m=15; v=concat([21, 340], vector(m-2)); for(n=3, m, v[n]=20*v[n-1]-64*v[n-2]); v}
-
A166914=BinaryRecurrenceSequence(20,-64,21,340)
[A166914(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A166984
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
Original entry on oeis.org
1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..830 (terms 0..200 from Vincenzo Librandi)
- E. Saltürk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543. - From _N. J. A. Sloane_, Oct 23 2012
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
-
[n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
LinearRecurrence[{20,-64},{1,20},30] (* Harvey P. Dale, Jul 04 2012 *)
-
a(n) = (4*16^n - 4^n)/3 \\ Charles R Greathouse IV, Jun 21 2022
-
A166984=BinaryRecurrenceSequence(20,-64,1,20)
[A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
A166927
a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 18.
Original entry on oeis.org
1, 18, 296, 4768, 76416, 1223168, 19572736, 313171968, 5010784256, 80172679168, 1282763390976, 20524216352768, 328387470032896, 5254199554080768, 84067192999510016, 1345075088529031168, 21521201418611982336
Offset: 0
-
[ n le 2 select 17*n-16 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
LinearRecurrence[{20, -64}, {1, 18}, 50] (* G. C. Greubel, May 28 2016 *)
Showing 1-8 of 8 results.
Comments