cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A065528 Numbers n such that phi(n) is a nontrivial power b^c where b > 1 and c > 1.

Original entry on oeis.org

5, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 37, 40, 48, 51, 57, 60, 63, 64, 68, 74, 76, 80, 85, 96, 101, 102, 108, 114, 120, 125, 126, 128, 136, 160, 170, 185, 192, 197, 202, 204, 219, 240, 247, 250, 255, 256, 257, 259, 272, 273, 285, 292, 296, 304, 315, 320, 327, 333
Offset: 1

Views

Author

Joseph L. Pe, Nov 27 2001

Keywords

Comments

What values of b can occur?
Apparently all even numbers can occur as values of b. Checked up to 50000; see A227533. - Charles R Greathouse IV, Jul 15 2013

Examples

			phi(63) = 6^2, phi(96) = 2^5.
		

Crossrefs

Cf. A166955.

Programs

  • Mathematica
    ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; Select[ Range@ 330, ppQ@ EulerPhi@ # &] (* Robert G. Wilson v, Jul 16 2013 *)
  • PARI
    v=[]; for(n=2, 333, if(ispower(eulerphi(n)), v=concat(v, n))); v (Hobson)
    
  • PARI
    is(n)=ispower(eulerphi(n)) \\ Charles R Greathouse IV, Jul 15 2013

Formula

a(n) = A166955(n+2). - Juri-Stepan Gerasimov, Oct 25 2009

Extensions

More terms from Nick Hobson, Nov 29 2006
b-file from Charles R Greathouse IV, Mar 25 2010

A216412 The cubes arising in A039771.

Original entry on oeis.org

1, 1, 8, 8, 8, 8, 8, 64, 64, 64, 64, 64, 64, 64, 64, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 216, 512, 216, 216, 512, 512, 512, 1000, 1000, 512, 512, 1000, 512, 512, 512, 1728, 1728, 1000, 512, 1000, 512, 1728, 1000, 1728, 1728, 1000, 1000, 1728, 1728, 1000, 1728, 1728, 1000, 1728
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[EulerPhi @ Range[3000], IntegerQ[Surd[#, 3]] &] (* Amiram Eldar, Mar 06 2020 *)

Formula

a(n) = A000010(A039771(n)). - Amiram Eldar, Mar 06 2020

A281016 Numbers k such that k, phi(k) and cototient(k) are all perfect powers.

Original entry on oeis.org

8, 16, 32, 64, 125, 128, 256, 512, 1024, 2048, 3125, 4096, 4913, 8192, 16384, 32768, 50653, 65536, 78125, 131072, 262144, 524288, 1030301, 1048576, 1419857, 1953125, 2097152, 4194304, 7645373, 8388608, 16777216, 16974593, 33554432, 35831808, 48828125, 64481201, 67108864, 69343957
Offset: 1

Views

Author

Altug Alkan, Jan 13 2017

Keywords

Comments

This sequence does not contain only prime powers. Least term that has a prime factor which is not of the form m^2 + 1 is 35831808 = 2^14 * 3^7. The next one is 102503232 = 2^6 * 3^6 * 13^3. There are infinitely many such numbers.
Contains 2^a * 3^b whenever min(GCD(a,b), GCD(a,b-1), GCD(a+1,b-1)) > 1, e.g. if a == 14 (mod 42) and b == 7 (mod 42). - Robert Israel, Jul 08 2025

Examples

			125 = 5^3 is a term because phi(5^3) = 10^2 and cototient(5^3) = 5^2.
		

Crossrefs

Programs

  • Maple
    ispow:= proc(n) local F;
      F:= ifactors(n)[2];
      igcd(F[..,2]) > 1
    end proc:
    N:= 10^8: # for terms <= N
    P:= select(isprime, [2,seq(i,i=3..isqrt(N),2)]):
    Cands:= {seq(seq(i^p, i = 2 .. floor(N^(1/p))),p = P)}:
    filter:= proc(n) local t; t:= numtheory:-phi(n); ispow(t) and ispow(n-t) end proc:
    sort(convert(select(filter, Cands),list)); # Robert Israel, Jul 08 2025
  • Mathematica
    Select[Range[10^6], Times @@ Boole@ Map[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1] &, {#, EulerPhi@ #, # - EulerPhi@ #}] > 0 &] (* Michael De Vlieger, Jan 14 2017 *)
  • PARI
    is(n) = ispower(eulerphi(n)) && ispower(n-eulerphi(n)) && ispower(n);

A281069 Least k such that phi(k) is an n-th power when k is the product of n distinct primes.

Original entry on oeis.org

2, 10, 30, 3458, 29526, 5437705, 91604415, 1190857395, 26535163830, 344957129790
Offset: 1

Views

Author

Altug Alkan, Jan 14 2017

Keywords

Comments

Subsequence of A166955.
Corresponding values of phi(k) are 1, 4, 8, 1296, 7776, 2985984, ...
Freiberg (Theorem 1.2) shows that there are >> (n*x^(1/n))/(log x)^(n+2) such values of k up to x. He calls the set of such numbers B*(x;-1;n). In particular, a(n) exists for each n.
a(11) <= 5703406198237930, a(12) <= 178435136773443810, a(13) <= 4961806417984478790. - Daniel Suteu, Apr 04 2021

Examples

			a(4) = 3458 = 2 * 7 * 13 * 19 and phi(3458) = (2-1)*(7-1)*(13-1)*(19-1) = 6^4.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k=2); while (!(issquarefree(k) && (omega(k)==n) && (ispower(eulerphi(k),n))), k++); k;} \\ Michel Marcus, Jan 16 2017
    
  • Python
    from itertools import count
    from math import isqrt, prod
    from sympy import perfect_power, primefactors, primerange, integer_nthroot, primepi
    def A281069(n):
        def squarefreealmostprimepi(n,k):
            if k==0: return int(n>=1)
            def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1)))
            return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,k)) if k>1 else primepi(n))
        return next(k for k in (squarefreealmostprime(i,n) for i in count(1)) if (p:=perfect_power(prod(p-1 for p in primefactors(k)))) and p[1] == n) if n>1 else 2 # Chai Wah Wu, Sep 09 2024

Extensions

a(9)-a(10) from Jinyuan Wang, Nov 08 2020

A216452 The fourth roots of the fourth powers arising in A078164.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 10, 8, 8, 8, 10, 8, 10, 8, 8, 8, 10, 10, 10, 12, 12, 12, 12, 10, 12
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Crossrefs

A332008 Numbers k such that phi(k) and phi(k+1) are perfect powers (A001597).

Original entry on oeis.org

1, 15, 16, 63, 101, 125, 255, 256, 272, 504, 512, 513, 629, 679, 1358, 1359, 1728, 1970, 2047, 2222, 2509, 2834, 3458, 3705, 4094, 4095, 4400, 4577, 4616, 4913, 5403, 6817, 7295, 7956, 8729, 11667, 11672, 16132, 16384, 16523, 17507, 23085, 24198, 24564, 24624, 25220, 25601, 27216, 27384, 28564, 29444
Offset: 1

Views

Author

Antonio Roldán, Feb 04 2020

Keywords

Examples

			phi(101) = 10^2, and phi(102) = 2^5.
phi(3458) = 6^4, and phi(3459) = 48^2.
		

Crossrefs

Programs

  • Magma
    [1] cat [k:k in [3..30000]|IsPower(EulerPhi(k))  and IsPower(EulerPhi(k+1))]; // Marius A. Burtea, Feb 05 2020
  • Mathematica
    perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[30000], And @@ perfectPowerQ /@ EulerPhi[# + {0, 1}] &] (* Amiram Eldar, Feb 04 2020 *)
  • PARI
    v=[1]; for(i = 2, 30000, if(ispower(eulerphi(i)), if(ispower(eulerphi(i+1)), v = concat(v, i)))); v
    
Showing 1-6 of 6 results.