A166984 a(n) = 20*a(n-1) - 64*a(n-2) for n > 1; a(0) = 1, a(1) = 20.
1, 20, 336, 5440, 87296, 1397760, 22368256, 357908480, 5726601216, 91625881600, 1466015154176, 23456246661120, 375299963355136, 6004799480791040, 96076791961092096, 1537228672451215360, 24595658763514413056, 393530540233410478080, 6296488643803287126016
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..830 (terms 0..200 from Vincenzo Librandi)
- E. Saltürk and I. Siap, Generalized Gaussian Numbers Related to Linear Codes over Galois Rings, European Journal of Pure and Applied Mathematics, Vol. 5, No. 2, 2012, 250-259; ISSN 1307-5543. - From _N. J. A. Sloane_, Oct 23 2012
- Index entries for linear recurrences with constant coefficients, signature (20,-64).
Crossrefs
Programs
-
Magma
[n le 2 select 19*n-18 else 20*Self(n-1)-64*Self(n-2): n in [1..17] ];
-
Mathematica
LinearRecurrence[{20,-64},{1,20},30] (* Harvey P. Dale, Jul 04 2012 *)
-
PARI
a(n) = (4*16^n - 4^n)/3 \\ Charles R Greathouse IV, Jun 21 2022
-
SageMath
A166984=BinaryRecurrenceSequence(20,-64,1,20) [A166984(n) for n in range(31)] # G. C. Greubel, Oct 02 2024
Formula
a(n) = (4*16^n - 4^n)/3.
G.f.: 1/((1-4*x)*(1-16*x)).
Limit_{n -> oo} a(n)/a(n-1) = 16.
a(n) = A115490(n+1)/3.
Sum_{n>=0} a(n) x^(2*n+4)/(2*n+4)! = ( sinh(x) )^4/4!. - Robert A. Russell, Apr 03 2013
From Klaus Purath, Oct 15 2020: (Start)
a(n) = 16*a(n-1) + 4^n with a(0) = 1. - Nadia Lafreniere, Aug 08 2022
E.g.f.: (4/3)*exp(10*x)*sinh(6*x + log(2)). - G. C. Greubel, Oct 02 2024
Comments