A167009 a(n) = Sum_{k=0..n} C(n^2, n*k).
1, 2, 8, 170, 16512, 6643782, 11582386286, 79450506979090, 2334899414608412672, 265166261617029717011822, 128442558588779813655233443038, 238431997806538515396060130910954852
Offset: 0
Keywords
Examples
The triangle A209330 of coefficients C(n^2, n*k), n>=k>=0, begins: 1; 1, 1; 1, 6, 1; 1, 84, 84, 1; 1, 1820, 12870, 1820, 1; 1, 53130, 3268760, 3268760, 53130, 1; 1, 1947792, 1251677700, 9075135300, 1251677700, 1947792, 1; ... in which the row sums form this sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..58
- Vaclav Kotesovec, Interesting asymptotic formulas for binomial sums, Jun 09 2013.
Programs
-
Magma
[(&+[Binomial(n^2, n*j): j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
-
Mathematica
Table[Sum[Binomial[n^2,n*k],{k,0,n}],{n,0,15}] (* Harvey P. Dale, Dec 11 2011 *)
-
PARI
a(n)=sum(k=0,n,binomial(n^2,n*k))
-
Sage
[sum(binomial(n^2, n*j) for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022
Formula
Ignoring initial term, equals the logarithmic derivative of A167006. - Paul D. Hanna, Nov 18 2009
If n is even then a(n) ~ c * 2^(n^2 + 1/2)/(n*sqrt(Pi)), where c = Sum_{k = -infinity..infinity} exp(-2*k^2) = 1.271341522189... (see A218792). - Vaclav Kotesovec, Nov 05 2012
If n is odd then c = Sum_{k = -infinity..infinity} exp(-2*(k+1/2)^2) = 1.23528676585389... - Vaclav Kotesovec, Nov 06 2012
a(n) = A306846(n^2,n) = [x^(n^2)] (1-x)^(n-1)/((1-x)^n - x^n) for n > 0. - Seiichi Manyama, Oct 11 2021