cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A077121 Number of integer squares <= n^3.

Original entry on oeis.org

1, 2, 3, 6, 9, 12, 15, 19, 23, 28, 32, 37, 42, 47, 53, 59, 65, 71, 77, 83, 90, 97, 104, 111, 118, 126, 133, 141, 149, 157, 165, 173, 182, 190, 199, 208, 217, 226, 235, 244, 253, 263, 273, 282, 292, 302, 312, 323, 333, 344, 354, 365, 375, 386, 397, 408, 420
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) = number of terms in n-th row of A167222. - Reinhard Zumkeller, Oct 31 2009

Examples

			Squares <= 3^3 = 27: 0, 1, 4, 9, 16 and 25, hence a(3) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Floor[Sqrt[n^3]] + 1; Array[a, 100, 0] (* Amiram Eldar, Apr 06 2025 *)
  • Python
    from math import isqrt
    def A077121(n): return isqrt(n**3)+1 # Chai Wah Wu, Sep 08 2024

Formula

a(n) = floor(n^(3/2))+1 = A000093(n) + 1.

A167224 Table of primes of the form n^3 - k^2, 0<=k<=A077121(n).

Original entry on oeis.org

7, 23, 11, 2, 109, 89, 61, 191, 167, 47, 307, 199, 19, 503, 487, 463, 431, 223, 151, 71, 53, 991, 919, 271, 1327, 1231, 1187, 547, 431, 307, 1607, 1559, 1439, 1367, 1103, 887, 503, 359, 47, 2161, 2053, 1873, 1621, 1297, 433, 2719, 2663, 2383, 1783, 1223, 1063
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2009

Keywords

Comments

Primes in A167222;
A161681 is the range of this table.

Examples

			7;23,11,2;;109,89,61;191,167,47;307,199,19;503,487,... .
		

A261893 a(n) = (n+1)^3 - n^2.

Original entry on oeis.org

1, 7, 23, 55, 109, 191, 307, 463, 665, 919, 1231, 1607, 2053, 2575, 3179, 3871, 4657, 5543, 6535, 7639, 8861, 10207, 11683, 13295, 15049, 16951, 19007, 21223, 23605, 26159, 28891, 31807, 34913, 38215, 41719, 45431, 49357, 53503, 57875, 62479, 67321, 72407
Offset: 0

Views

Author

Reinhard Zumkeller, Sep 05 2015

Keywords

Crossrefs

Subsequence of A167222.

Programs

  • Haskell
    a261893 n = n * (n * (n + 2) + 3) + 1
    a261893_list = zipWith (-) (tail a000578_list) a000290_list
    
  • Magma
    [n^3+2*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jul 04 2016
  • Mathematica
    Table[n^3 + 2 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jul 04 2016 *)
    LinearRecurrence[{4,-6,4,-1},{1,7,23,55},50] (* Harvey P. Dale, Mar 01 2023 *)
  • Maxima
    makelist(n^3+2*n^2+3*n+1, n, 0, 50); /* Bruno Berselli, Jul 04 2016 */
    
  • PARI
    vector(50, n, n--; n^3+2*n^2+3*n+1) \\ Bruno Berselli, Jul 04 2016
    
  • Sage
    [n^3+2*n^2+3*n+1 for n in range(50)]; # Bruno Berselli, Jul 04 2016
    

Formula

a(n) = n^3 + 2*n^2 + 3*n + 1.
a(n) = A000578(n+1) - A000290(n).
O.g.f.: (1 + 3*x + x^2 + x^3)/(1 - x)^4. - Bruno Berselli, Jul 04 2016
E.g.f.: (1 + 6*x + 5*x^2 + x^3)*exp(x). - Bruno Berselli, Jul 04 2016

A373218 Cubes equal to the sum of a factorial number and a square.

Original entry on oeis.org

1, 27, 729, 46656
Offset: 1

Views

Author

Gonzalo Martínez, May 28 2024

Keywords

Comments

Cubes c^3 for which the c-th row of A167222 includes a factorial number. - Michel Marcus, May 28 2024
a(5) > 8*10^24. - Michael S. Branicky, Jun 23 2024
a(5) > 10^38. - Martin Ehrenstein, Jun 24 2024

Examples

			1 = 1! + 0^2.
27 = 2! + 5^2.
729 = 6! + 3^2.
46656 = 7! + 204^2.
		

Crossrefs

Programs

  • PARI
    isok(k) = my(c=k^3, i=1, p=1); while (1, if (issquare(c-p), return(1)); i++; p *=i; if (p> c, return(0)););
    for (n=1, 50, if (isok(n), print1(n^3, ", "))); \\ Michel Marcus, Jun 06 2024
Showing 1-4 of 4 results.