cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A167222 Irregular triangle read by rows: T(n,k) = n^3 - k^2 with 0 <= k <= A077121(n).

Original entry on oeis.org

0, 1, 0, 8, 7, 4, 27, 26, 23, 18, 11, 2, 64, 63, 60, 55, 48, 39, 28, 15, 0, 125, 124, 121, 116, 109, 100, 89, 76, 61, 44, 25, 4, 216, 215, 212, 207, 200, 191, 180, 167, 152, 135, 116, 95, 72, 47, 20, 343, 342, 339, 334, 327, 318, 307, 294, 279, 262, 243, 222, 199, 174
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 31 2009

Keywords

Examples

			Triangle begins:
  0;
  1, 0;
  8, 7, 4;
  27, 26, 23, 18, 11, 2;
  64, 63, 60, 55, 48, 39, 28, 15, 0;
  125, 124, 121, 116, 109, 100, 89, 76, 61, 44, 25, 4;
  216, 215, 212, 207, 200, 191, 180, 167, 152, 135, 116, 95, 72, 47, 20;
  ...
		

Crossrefs

For primes see A167224.

Programs

  • PARI
    row(n) = my(c=n^3); vector(1+sqrtint(c), i, c-(i-1)^2); \\ Michel Marcus, May 28 2024

A167224 Table of primes of the form n^3 - k^2, 0<=k<=A077121(n).

Original entry on oeis.org

7, 23, 11, 2, 109, 89, 61, 191, 167, 47, 307, 199, 19, 503, 487, 463, 431, 223, 151, 71, 53, 991, 919, 271, 1327, 1231, 1187, 547, 431, 307, 1607, 1559, 1439, 1367, 1103, 887, 503, 359, 47, 2161, 2053, 1873, 1621, 1297, 433, 2719, 2663, 2383, 1783, 1223, 1063
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 31 2009

Keywords

Comments

Primes in A167222;
A161681 is the range of this table.

Examples

			7;23,11,2;;109,89,61;191,167,47;307,199,19;503,487,... .
		

A167223 Number of primes of the form n^3 - k^2, 0<=k<=A077121(n).

Original entry on oeis.org

0, 0, 1, 3, 0, 3, 3, 3, 7, 1, 3, 6, 9, 6, 7, 11, 1, 20, 13, 5, 19, 11, 8, 15, 15, 0, 17, 22, 11, 22, 16, 7, 39, 28, 8, 29, 1, 12, 31, 22, 16, 46, 33, 13, 32, 30, 13, 58, 43, 0, 47, 22, 28, 49, 39, 20, 47, 51, 18, 44, 32, 21, 84, 63, 0, 70, 38, 28, 113, 45, 23, 43, 66, 46, 52, 63, 28, 78
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 31 2009

Keywords

Comments

Number of terms per row in the table of A167224;
a(n) <= A077121(n).

Examples

			a(3) = #{27-4, 27-16, 27-25} = #{23, 11, 2} = 3;
a(4) = #{} = 0;
a(5) = #{125-16, 125-36, 125-64} = #{109, 89, 61} = 3.
		

A000093 a(n) = floor(n^(3/2)).

Original entry on oeis.org

0, 1, 2, 5, 8, 11, 14, 18, 22, 27, 31, 36, 41, 46, 52, 58, 64, 70, 76, 82, 89, 96, 103, 110, 117, 125, 132, 140, 148, 156, 164, 172, 181, 189, 198, 207, 216, 225, 234, 243, 252, 262, 272, 281, 291, 301, 311, 322, 332, 343, 353, 364, 374, 385, 396, 407, 419, 430
Offset: 0

Views

Author

Keywords

References

  • B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Integer part of square root of n^k: A000196 (k=1), this sequence (k=3), A155013 (k=5), A155014 (k=7), A155015 (k=11), A155016 (k=13), A155018 (k=15), A155019 (k=17).
Cf. A002821.
Cf. A185549.

Programs

  • Haskell
    a000093 = a000196 . a000578  -- Reinhard Zumkeller, Jul 11 2014
    
  • Maple
    Digits := 100: A000093 := n->floor(evalf(n^(3/2)));
  • Mathematica
    Table[ Floor[ Sqrt[n^3]], {n, 0, 60}]
  • PARI
    a(n)=if(n<0,0,sqrtint(n^3))
    
  • Python
    from math import isqrt
    def A000093(n): return isqrt(n**3) # Chai Wah Wu, Sep 08 2024

Formula

a(n) = A077121(n) - 1. [Reinhard Zumkeller, Oct 31 2009]
a(n) = floor(n*sqrt(n)). [Arkadiusz Wesolowski, Jun 01 2011]
a(n) = A000196(A000578(n)) = A074704(n)+n*A000196(n). [Reinhard Zumkeller, Jun 27 2011]

Extensions

More terms from James Sellers, May 04 2000

A065733 Largest square <= n^3.

Original entry on oeis.org

0, 1, 4, 25, 64, 121, 196, 324, 484, 729, 961, 1296, 1681, 2116, 2704, 3364, 4096, 4900, 5776, 6724, 7921, 9216, 10609, 12100, 13689, 15625, 17424, 19600, 21904, 24336, 26896, 29584, 32761, 35721, 39204, 42849, 46656, 50625, 54756, 59049, 63504
Offset: 0

Views

Author

Labos Elemer, Nov 15 2001

Keywords

Examples

			a(10) = 961, as 961 = 31^2 is the largest square <= 1000 = 10^3.
		

Crossrefs

Programs

  • Haskell
    a065733 n = head [x | x <- reverse [0.. n^3], a010052 x == 1] -- Reinhard Zumkeller, Oct 10 2013
  • Mathematica
    Table[Floor[Sqrt[w^3]//N]^2, {w, 1, 50}]
  • PARI
    A065733(n)=sqrtint(n^3)^2  \\ M. F. Hasler, Oct 05 2013
    

Formula

a(n) + A077116(n) = n^3.
a(n) = A048760(n^3).
n^3 - 2*n^(3/2) <= a(n) <= n^3. - Charles R Greathouse IV, Dec 05 2022
a(n) = A000093(n)^2. - Amiram Eldar, Jul 14 2024

A077113 Number of nonnegative integer cubes <= n^2.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 29 2002

Keywords

Comments

a(n) is the least number m such that m^3 > n^2. - Zak Seidov, May 03 2005

Examples

			Cubes <= 10^2: 0, 1, 8, 27 and 64, hence a(10) = 5.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[n^(2/3) + 1], {n, 0, 100}] (* Zak Seidov, May 03 2005 *)
  • Python
    from sympy import integer_nthroot
    def A077113(n): return integer_nthroot(n**2,3)[0]+1 # Chai Wah Wu, Aug 15 2025

Formula

a(n) = floor(n^(2/3))+1.
a(n) = [x^(n^2)] (1/(1 - x))*Sum_{k>=0} x^(k^3). - Ilya Gutkovskiy, Apr 20 2018
a(n) = A100196(n) + 1. - Amiram Eldar, Apr 05 2025

Extensions

Edited by N. J. A. Sloane, Aug 29 2008 at the suggestion of R. J. Mathar

A139753 a(2n) = next cube after a(2n-1), a(2n+1) = next square after a(2n).

Original entry on oeis.org

1, 8, 9, 27, 36, 64, 81, 125, 144, 216, 225, 343, 361, 512, 529, 729, 784, 1000, 1024, 1331, 1369, 1728, 1764, 2197, 2209, 2744, 2809, 3375, 3481, 4096, 4225, 4913, 5041, 5832, 5929, 6859, 6889, 8000, 8100, 9261, 9409, 10648, 10816, 12167, 12321, 13824
Offset: 1

Views

Author

Zak Seidov, May 19 2008

Keywords

Comments

Terms with even indices are cubes n^3 with n=2,3,... (all integers >1), while terms with odd indices are square m^3 with m=1,3,6,9,12,15,19,23,28,32,37,42,47,53,59,65,71,77,83,90,97,104,111,118,126,133,141,149,157,165,173,182,190,199,208,217,226,235,244,253,263,273,282,292,302,312,323,333,344,354,365,375,386,397,408,420,431,442,454,465,477,489,501,513,525,537,549,561,574,586,599,611,624,637,650,663,676,689,703,716,730,743,757,770,784,798,812,826,840,854,869,883,897,912,926,941,956,971,986,1001; cf. A077121 Number of integer squares <= n^3.

Examples

			a(1)=1 considered as square,
a(2)=8 = least cube >a(1);
a(3)=9 = least square >a(2),
a(4)=27 = least cube >a(3),
a(5)=36 = least square >a(4),
a(6)=64 = least cube >a(5),
a(7)=81 = least square >a(6),
a(8)=125 = least cube >a(7).
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[OddQ[n],(Floor[Surd[a,3]]+1)^3,(Floor[Sqrt[a]]+1)^2]}; NestList[nxt,{1,1},50][[All,2]] (* Harvey P. Dale, Feb 09 2022 *)
Showing 1-7 of 7 results.