A167487 a(n) = n*(n + 3)/2 + 8.
8, 10, 13, 17, 22, 28, 35, 43, 52, 62, 73, 85, 98, 112, 127, 143, 160, 178, 197, 217, 238, 260, 283, 307, 332, 358, 385, 413, 442, 472, 503, 535, 568, 602, 637, 673, 710, 748, 787, 827, 868, 910, 953, 997, 1042, 1088, 1135, 1183, 1232, 1282, 1333, 1385, 1438, 1492
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A167499.
Programs
-
Magma
[n*(n+3)/2+8: n in [0..60]]; // Vincenzo Librandi, Sep 16 2013
-
Mathematica
Table[n (n + 3)/2 + 8, {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 03 2011 *) CoefficientList[Series[(8 - 14 x + 7 x^2) / (1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Sep 16 2013 *) LinearRecurrence[{3,-3,1},{8,10,13},60] (* Harvey P. Dale, Jul 05 2020 *)
-
PARI
a(n)=n*(n+3)/2+8 \\ Charles R Greathouse IV, Jun 16 2017
Formula
a(n) = n + a(n-1) + 1 with n > 1, a(1)=10.
G.f.: (8 - 14*x + 7*x^2)/(1 - x)^3. - Vincenzo Librandi, Sep 16 2013
a(n) = Sum_{i=n-5..n+7} i*(i+1)/26. - Bruno Berselli, Oct 20 2016
Sum_{n>=0} 1/a(n) = -1/7 + 2*Pi*tanh(sqrt(55)*Pi/2)/sqrt(55). - Amiram Eldar, Dec 13 2022
From Elmo R. Oliveira, Oct 31 2024: (Start)
E.g.f.: exp(x)*(8 + 2*x + x^2/2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments