cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A001477 The nonnegative integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 0

Views

Author

Keywords

Comments

Although this is a list, and lists normally have offset 1, it seems better to make an exception in this case. - N. J. A. Sloane, Mar 13 2010
The subsequence 0,1,2,3,4 gives the known values of n such that 2^(2^n)+1 is a prime (see A019434, the Fermat primes). - N. J. A. Sloane, Jun 16 2010
Also: The identity map, defined on the set of nonnegative integers. The restriction to the positive integers yields the sequence A000027. - M. F. Hasler, Nov 20 2013
The number of partitions of 2n into exactly 2 parts. - Colin Barker, Mar 22 2015
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 8960 or 168.- Philippe A.J.G. Chevalier, Dec 29 2015
Partial sums give A000217. - Omar E. Pol, Jul 26 2018
First differences are A000012 (the "all 1's" sequence). - M. F. Hasler, May 30 2020
See A061579 for the transposed infinite square matrix, or triangle with rows reversed. - M. F. Hasler, Nov 09 2021
This is the unique sequence (a(n)) that satisfies the inequality a(n+1) > a(a(n)) for all n in N. This simple and surprising result comes from the 6th problem proposed by Bulgaria during the second day of the 19th IMO (1977) in Belgrade (see link and reference). - Bernard Schott, Jan 25 2023

Examples

			Triangular view:
   0
   1   2
   3   4   5
   6   7   8   9
  10  11  12  13  14
  15  16  17  18  19  20
  21  22  23  24  25  26  27
  28  29  30  31  32  33  34  35
  36  37  38  39  40  41  42  43  44
  45  46  47  48  49  50  51  52  53  54
		

References

  • Maurice Protat, Des Olympiades à l'Agrégation, suite vérifiant f(n+1) > f(f(n)), Problème 7, pp. 31-32, Ellipses, Paris 1997.

Crossrefs

Cf. A000027 (n>=1).
Cf. A000012 (first differences).
Partial sums of A057427. - Jeremy Gardiner, Sep 08 2002
Cf. A038608 (alternating signs), A001787 (binomial transform).
Cf. A055112.
Cf. Boustrophedon transforms: A231179, A000737.
Cf. A245422.
Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A000217.
When written as an array, the rows/columns are A000217, A000124, A152948, A152950, A145018, A167499, A166136, A167487... and A000096, A034856, A055998, A046691, A052905, A055999... (with appropriate offsets); cf. analogous lists for A000027 in A185787.
Cf. A000290.
Cf. A061579 (transposed matrix / reversed triangle).

Programs

Formula

a(n) = n.
a(0) = 0, a(n) = a(n-1) + 1.
G.f.: x/(1-x)^2.
Multiplicative with a(p^e) = p^e. - David W. Wilson, Aug 01 2001
When seen as array: T(k, n) = n + (k+n)*(k+n+1)/2. Main diagonal is 2*n*(n+1) (A046092), antidiagonal sums are n*(n+1)*(n+2)/2 (A027480). - Ralf Stephan, Oct 17 2004
Dirichlet generating function: zeta(s-1). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: x*e^x. - Franklin T. Adams-Watters, Sep 11 2005
a(0)=0, a(1)=1, a(n) = 2*a(n-1) - a(n-2). - Jaume Oliver Lafont, May 07 2008
Alternating partial sums give A001057 = A000217 - 2*(A008794). - Eric Desbiaux, Oct 28 2008
a(n) = 2*A080425(n) + 3*A008611(n-3), n>1. - Eric Desbiaux, Nov 15 2009
a(n) = A007966(n)*A007967(n). - Reinhard Zumkeller, Jun 18 2011
a(n) = Sum_{k>=0} A030308(n,k)*2^k. - Philippe Deléham, Oct 20 2011
a(n) = 2*A028242(n-1) + (-1)^n*A000034(n-1). - R. J. Mathar, Jul 20 2012
a(n+1) = det(C(i+1,j), 1 <= i, j <= n), where C(n,k) are binomial coefficients. - Mircea Merca, Apr 06 2013
a(n-1) = floor(n/e^(1/n)) for n > 0. - Richard R. Forberg, Jun 22 2013
a(n) = A000027(n) for all n>0.
a(n) = floor(cot(1/(n+1))). - Clark Kimberling, Oct 08 2014
a(0)=0, a(n>0) = 2*z(-1)^[( |z|/z + 3 )/2] + ( |z|/z - 1 )/2 for z = A130472(n>0); a 1 to 1 correspondence between integers and naturals. - Adriano Caroli, Mar 29 2015
G.f. as triangle: x*(1 + (x^2 - 5*x + 2)*y + x*(2*x - 1)*y^2)/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 22 2025

A055998 a(n) = n*(n+5)/2.

Original entry on oeis.org

0, 3, 7, 12, 18, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 150, 168, 187, 207, 228, 250, 273, 297, 322, 348, 375, 403, 432, 462, 493, 525, 558, 592, 627, 663, 700, 738, 777, 817, 858, 900, 943, 987, 1032, 1078, 1125, 1173, 1222, 1272
Offset: 0

Views

Author

Barry E. Williams, Jun 14 2000

Keywords

Comments

If X is an n-set and Y a fixed (n-3)-subset of X then a(n-3) is equal to the number of 2-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Bisection of A165157. - Jaroslav Krizek, Sep 05 2009
a(n) is the number of (w,x,y) having all terms in {0,...,n} and w=x+y-1. - Clark Kimberling, Jun 02 2012
Numbers m >= 0 such that 8m+25 is a square. - Bruce J. Nicholson, Jul 26 2017
a(n-1) = 3*(n-1) + (n-1)*(n-2)/2 is the number of connected, loopless, non-oriented, multi-edge vertex-labeled graphs with n edges and 3 vertices. Labeled multigraph analog of A253186. There are 3*(n-1) graphs with the 3 vertices on a chain (3 ways to label the middle graph, n-1 ways to pack edges on one of connections) and binomial(n-1,2) triangular graphs (one way to label the graphs, pack 1 or 2 or ...n-2 on the 1-2 edge, ...). - R. J. Mathar, Aug 10 2017
a(n) is also the number of vertices of the quiver for PGL_{n+1} (see Shen). - Stefano Spezia, Mar 24 2020
Starting from a(2) = 7, this is the 4th column of the array: natural numbers written by antidiagonals downwards. See the illustration by Kival Ngaokrajang and the cross-references. - Andrey Zabolotskiy, Dec 21 2021

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

Crossrefs

a(n) = A095660(n+1, 2): third column of (1, 3)-Pascal triangle.
Row n=2 of A255961.

Programs

Formula

G.f.: x*(3-2*x)/(1-x)^3.
a(n) = A027379(n), n > 0.
a(n) = A126890(n,2) for n > 1. - Reinhard Zumkeller, Dec 30 2006
a(n) = A000217(n) + A005843(n). - Reinhard Zumkeller, Sep 24 2008
If we define f(n,i,m) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-m-j), then a(n) = -f(n,n-1,3), for n >= 1. - Milan Janjic, Dec 20 2008
a(n) = A167544(n+8). - Philippe Deléham, Nov 25 2009
a(n) = a(n-1) + n + 2 with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(n) = Sum_{k=1..n} (k+2). - Gary Detlefs, Aug 10 2010
a(n) = A034856(n+1) - 1 = A000217(n+2) - 3. - Jaroslav Krizek, Sep 05 2009
Sum_{n>=1} 1/a(n) = 137/150. - R. J. Mathar, Jul 14 2012
a(n) = 3*n + A000217(n-1) = 3*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=3..n+2} i. - Wesley Ivan Hurt, Jun 28 2013
a(n) = 3*A000217(n) - 2*A000217(n-1). - Bruno Berselli, Dec 17 2014
a(n) = A046691(n) + 1. Also, a(n) = A052905(n-1) + 2 = A055999(n-1) + 3 for n>0. - Andrey Zabolotskiy, May 18 2016
E.g.f.: x*(6+x)*exp(x)/2. - G. C. Greubel, Apr 05 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 47/150. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = -5*cos(sqrt(33)*Pi/2)/(4*Pi).
Product_{n>=1} (1 + 1/a(n)) = 15*cos(sqrt(17)*Pi/2)/(2*Pi). (End)

A245300 Triangle T(n,k) = (n+k)*(n+k+1)/2 + k, 0 <= k <= n, read by rows.

Original entry on oeis.org

0, 1, 4, 3, 7, 12, 6, 11, 17, 24, 10, 16, 23, 31, 40, 15, 22, 30, 39, 49, 60, 21, 29, 38, 48, 59, 71, 84, 28, 37, 47, 58, 70, 83, 97, 112, 36, 46, 57, 69, 82, 96, 111, 127, 144, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 55, 67, 80, 94, 109, 125, 142, 160, 179, 199, 220
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 17 2014

Keywords

Examples

			First rows and their row sums (A245301):
   0                                                                  0;
   1,  4                                                              5;
   3,  7,  12                                                        22;
   6, 11,  17,  24                                                   58;
  10, 16,  23,  31,  40                                             120;
  15, 22,  30,  39,  49,  60                                        215;
  21, 29,  38,  48,  59,  71,  84                                   350;
  28, 37,  47,  58,  70,  83,  97, 112                              532;
  36, 46,  57,  69,  82,  96, 111, 127, 144                         768;
  45, 56,  68,  81,  95, 110, 126, 143, 161, 180                   1065;
  55, 67,  80,  94, 109, 125, 142, 160, 179, 199, 220              1430;
  66, 79,  93, 108, 124, 141, 159, 178, 198, 219, 241, 264         1870;
  78, 92, 107, 123, 140, 158, 177, 197, 218, 240, 263, 287, 312    2392.
		

Crossrefs

Programs

  • Haskell
    a245300 n k = (n + k) * (n + k + 1) `div` 2 + k
    a245300_row n = map (a245300 n) [0..n]
    a245300_tabl = map a245300_row [0..]
    a245300_list = concat a245300_tabl
    
  • Magma
    [k + Binomial(n+k+1,2): k in [0..n], n in [0..15]]; // G. C. Greubel, Apr 01 2021
    
  • Mathematica
    Table[k + Binomial[n+k+1,2], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 01 2021 *)
  • Sage
    flatten([[k + binomial(n+k+1,2) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Apr 01 2021

Formula

T(n, 0) = A000217(n).
T(n, n) = A046092(n).
T(2*n, n) = A062725(n) (central terms).
Sum_{k=0..n} T(n, k) = A245301(n).
From G. C. Greubel, Apr 01 2021: (Start)
T(n, 1) = A000124(n+1) = A134869(n+1), n >= 1.
T(n, 2) = A152948(n+4), n >= 2.
T(n, 3) = A152950(n+4), n >= 3.
T(n, 4) = A145018(n+5), n >= 4.
T(n, 5) = A167499(n+4), n >= 5.
T(n, 6) = A166136(n+5), n >= 6.
T(n, 7) = A167487(n+6), n >= 7.
T(n, n-1) = A056220(n), n >= 1.
T(n, n-2) = A142463(n-1), n >= 2.
T(n, n-3) = A054000(n-1), n >= 3.
T(n, n-4) = A090288(n-3), n >= 4.
T(n, n-5) = A268581(n-4), n >= 5.
T(n, n-6) = A059993(n-4), n >= 6.
T(n, n-7) = (-1)*A147973(n), n >= 7.
T(n, n-8) = A139570(n-5), n >= 8.
T(n, n-9) = A271625(n-5), n >= 9.
T(n, n-10) = A222182(n-4), n >= 10.
T(2*n, n-1) = A081270(n-1), n >= 1.
T(2*n, n+1) = A117625(n+1), n >= 1. (End)

A356754 Triangle read by rows: T(n,k) = ((n-1)*(n+2))/2 + 2*k.

Original entry on oeis.org

2, 4, 6, 7, 9, 11, 11, 13, 15, 17, 16, 18, 20, 22, 24, 22, 24, 26, 28, 30, 32, 29, 31, 33, 35, 37, 39, 41, 37, 39, 41, 43, 45, 47, 49, 51, 46, 48, 50, 52, 54, 56, 58, 60, 62, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87
Offset: 1

Views

Author

Torlach Rush, Aug 25 2022

Keywords

Comments

The first column of the triangle is the Lazy Caterer's sequence A000124.
Each subsequent column starts with A000124(n) + (2 * (n-1)).
The first downward diagonal is A046691(n).
Columns and downward diagonals of the triangle identify many sequences (possibly shifted) in the database. Examples can be found in crossrefs below.
The sum of the n-th upward diagonal of the triangle is A356288(n).

Examples

			Triangle T(n,k) begins:
  n\k   1   2   3   4   5   6   7   8   9  10  11  ...
   1:   2
   2:   4   6
   3:   7   9  11
   4:  11  13  15  17
   5:  16  18  20  22  24
   6:  22  24  26  28  30  32
   7:  29  31  33  35  37  39  41
   8:  37  39  41  43  45  47  49  51
   9:  46  48  50  52  54  56  58  60  62
  10:  56  58  60  62  64  66  68  70  72  74
  11:  67  69  71  73  75  77  79  81  83  85  87
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[((n-1)(n+2))/2+2k,{n,20},{k,n}]//Flatten (* Harvey P. Dale, May 26 2023 *)
  • Python
    def T(n, k): return ((n-1) * (n+2))//2 + 2*k
    for n in range(1, 12):
        for k in range(1,(n+1)): print(T(n,k), end = ', ')
    
  • Python
    # Indexed as a linear sequence.
    def a000124(n): return n*(n+1)//2 + 1
    def a(n):
        l = m = 0
        for k in range(1,n):
            lc = a000124(k - 1)
            if n >= lc:
                l = lc
                m = k
            else: break
        return n + m + (n - l)

Formula

T(n,k) = ((n-1) * (n+2))/2 + 2*k.
T(n,k+1) = T(n,k) + 2, k < n.
Showing 1-4 of 4 results.