cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A174216 a(1)=15; for n>1, a(n) = the smallest number k >a(n-1) such that 2*A174214(k)= 3*(k-1).

Original entry on oeis.org

15, 27, 63, 123, 279, 567, 1143, 2307, 4623, 9447, 18927, 38283, 77139, 154839, 309747, 620463, 1241823, 2483847, 4967739, 9935607, 19892547, 39785199
Offset: 1

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

Theorem: If the sequence is infinite, then there exist infinitely many twin primes.
Conjecture. a(n+1)/a(n) tends to 2.

Crossrefs

Programs

  • Maple
    A174216 := proc(n) option remember ; if n =1 then 15 ; else for k from procname(n-1)+1 do if 2*A173214(k) = 3*(k-1) then return k; end if; end do ; end if; end proc: # R. J. Mathar, Mar 16 2010
  • Mathematica
    (* b = A174214 *) b[n_] := b[n] = Which[n==9, 14, CoprimeQ[b[n-1], n-1- (-1)^n], b[n-1]+1, True, 2n-4]; a[n_] := a[n] = If[n==1, 15, For[k = a[n- 1]+1, True, k++, If[2b[k] == 3(k-1), Return[k]]]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Feb 02 2016 *)

Extensions

Terms from a(11) on corrected by R. J. Mathar, Mar 16 2010
I corrected the terms beginning with a(11) and added some new terms. - Vladimir Shevelev, Mar 27 2010
Terms from a(11) onwards were corrected according to independent calculations by R. Mathar, M. Alekseyev, M. Hasler and A. Heinz (SeqFan lists 30 Oct and 1 Nov 2010). - Vladimir Shevelev, Nov 02 2010

A167493 a(1) = 2; thereafter a(n) = a(n-1) + gcd(n, a(n-1)) if n is odd, and a(n) = a(n-1) + gcd(n-2, a(n-1)) if n is even.

Original entry on oeis.org

2, 4, 5, 6, 7, 8, 9, 12, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126
Offset: 1

Views

Author

Vladimir Shevelev, Nov 05 2009

Keywords

Comments

Conjectures. 1) For n >= 2, every difference a(n) - a(n-1) is 1 or prime; 2) Every record of differences a(n) - a(n-1) greater than 3 belongs to the sequence of the greater of twin primes (A006512).
Conjecture #1 above fails at n = 620757, with a(n) = 1241487 and a(n-1) = 1241460, difference = 27. Additionally, the terms of related A167495(m) quickly tend to index n/2. So for example, A167495(14) = 19141 is seen at n = 38284. - Bill McEachen, Jan 20 2023
It seems that, for n > 4, (3*n-3)/2 <= a(n) <= 2n - 3. Can anyone find a proof or disproof? - Charles R Greathouse IV, Jan 22 2023

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,If[EvenQ[n],a+GCD[n+1,a],a+GCD[n-1,a]]}; Transpose[ NestList[nxt,{1,2},70]][[2]] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    lista(nn)=my(va = vector(nn)); va[1] = 2; for (n=2, nn, va[n] = if (n%2, va[n-1] + gcd(n, va[n-1]), va[n-1] + gcd(n-2, va[n-1]));); va; \\ Michel Marcus, Dec 13 2018
    
  • Python
    from math import gcd
    from itertools import count, islice
    def agen(): # generator of terms
        an = 2
        for n in count(2):
            yield an
            an = an + gcd(n, an) if n&1 else an + gcd(n-2, an)
    print(list(islice(agen(), 66))) # Michael S. Branicky, Jan 22 2023

Formula

For n > 3, n < a(n) < n*(n-1)/2. - Charles R Greathouse IV, Jan 22 2023

Extensions

More terms from Harvey P. Dale, Dec 05 2015

A174214 a(n) = a(n-1)+1, if the previous term a(n-1) and n-1-(-1)^n are coprime, else a(n)=2*n-4.

Original entry on oeis.org

14, 16, 17, 18, 19, 20, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 52, 53, 54, 55, 60, 62, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134
Offset: 9

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Crossrefs

Programs

  • Maple
    A174214 := proc(n) option remember ; if n = 9 then 14 ; elif gcd(procname(n-1),n-1-(-1)^n) = 1 then procname(n-1)+1 ; else 2*n-4 ; end if; end proc:
    seq(A174214(n),n=9..100) ; # R. J. Mathar, Mar 16 2010
  • Mathematica
    a[n_] := a[n] = Which[n==9, 14, CoprimeQ[a[n-1], n-1-(-1)^n], a[n-1]+1, True, 2n-4]; Table[a[n], {n, 9, 100}] (* Jean-François Alcover, Feb 02 2016 *)

Extensions

a(15) corrected and sequence extended by R. J. Mathar, Mar 16 2010
a(15) corrected and a(35)-a(74) added by John W. Layman, Mar 16 2010

A174217 a(n) = (A174216(n)-1)/2.

Original entry on oeis.org

7, 13, 31, 61, 139, 283, 571, 1153, 2311, 4723, 9463, 19141, 38569, 77419, 154873, 310231, 620911, 1241923, 2483869, 4967803, 9946273, 19892599
Offset: 1

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

Related to the generation of twin primes according to section 6 of the preprint.

Crossrefs

Programs

  • Mathematica
    (* b = A174214 *) b[n_] := b[n] = Which[n == 9, 14, CoprimeQ[b[n - 1], n - 1 - (-1)^n], b[n - 1] + 1, True, 2 n - 4];
    (* c = A174216 *) c[n_] := c[n] = If[n == 1, 15, For[k = c[n - 1] + 1, True, k++, If[2 b[k] == 3 (k - 1), Return[k]]]];
    Table[a[n] = (c[n] - 1)/2; Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 22}] (* Jean-François Alcover, Jan 29 2019 *)

Formula

A174214(A174216(n)) = 3*a(n), n>1.

Extensions

Terms after a(11) corrected by Vladimir Shevelev, Nov 02 2010

A174215 First differences of A174214.

Original entry on oeis.org

2, 1, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 31, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 9

Views

Author

Vladimir Shevelev, Mar 12 2010

Keywords

Comments

If a(n) is odd, then it is 1 or prime; if a(n) is even, then 2+a(n)/2 is prime.

Crossrefs

Formula

a(n) = A174214(n+1)-A174214(n).

Extensions

Terms corrected, using the Mathar-Layman corrections of A174214, by Vladimir Shevelev, Mar 26 2010

A168143 a(17)=37; for n>=17, a(n)=3n-14 if gcd(n,a(n-1))>1 and all prime divisors of n more than 17; a(n)=a(n-1)+1, otherwise.

Original entry on oeis.org

37, 38, 43, 44, 45, 46, 55, 56, 57, 58, 59, 60, 61, 62, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157
Offset: 17

Views

Author

Vladimir Shevelev, Nov 19 2009

Keywords

Comments

a(n+1)-a(n)+14 is either 15 or a prime > 17. For a generalization, see the second Shevelev link. - Edited by Robert Israel, Aug 21 2017

Crossrefs

Programs

  • Maple
    A[17]:= 37:
    q:= convert(select(isprime,[$2..17]),`*`);
    for n from 18 to 100 do
      if igcd(n,A[n-1]) > 1 and igcd(n,q) = 1 then A[n]:= 3*n-14
        else A[n]:= A[n-1]+1 fi
    od:
    seq(A[i],i=17..100); # Robert Israel, Aug 21 2017
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[GCD[n+1,a]>1&&FactorInteger[n+1][[1,1]]>17,3(n+1)-14,a+1]}; NestList[nxt,{17,37},60][[All,2]] (* Harvey P. Dale, Aug 15 2017 *)

Extensions

Corrected by Harvey P. Dale, Aug 15 2017

A174453 a(n) is the smallest k >= 1 for which gcd(m + (-1)^m, m + n - 4) > 1, where m = n + k - 1.

Original entry on oeis.org

1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 12, 1, 2, 1, 1, 1, 18, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 30, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 42, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 60, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 72, 1, 2, 1, 1, 1, 9, 1, 2, 1, 1, 1, 4, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 102
Offset: 5

Views

Author

Vladimir Shevelev, Mar 20 2010

Keywords

Comments

If a(n) > sqrt(n), then n-3 is the larger of twin primes. In these cases we have a(10)=5 and, for n > 10, a(n) = n-4. For odd n and for n == 2 (mod 6), a(n)=1; for n == 0 (mod 6), a(n)=2; for {n == 4 (mod 6)} & {n == 8 (mod 10)}, a(n)=4, etc. The problem is to develop this sieve for the excluding n for which a(n) <= sqrt(n) and to obtain nontrivial lower estimates for the counting function of the larger of twin primes.

Crossrefs

Programs

  • Maple
    A174453 := proc(n) local k,m ; for k from 1 do m := n+k-1 ; if igcd(m+(-1)^m,m+n-4) > 1 then return k; end if; end do: end proc: seq(A174453(n),n=5..120); # R. J. Mathar, Nov 04 2010
  • Mathematica
    a[n_] := For[k=1, True, k++, m=n+k-1; If[GCD[m+(-1)^m, m+n-4]>1, Return[k]] ];
    Table[a[n], {n, 5, 106}] (* Jean-François Alcover, Nov 29 2017 *)

Extensions

Terms beyond a(34) from R. J. Mathar, Nov 04 2010

A168144 First differences of A168143 which are different from 1, incremented by 14.

Original entry on oeis.org

19, 23, 31, 47, 79
Offset: 1

Views

Author

Vladimir Shevelev, Nov 19 2009

Keywords

Comments

All terms of the sequence are primes greater than 17.
Are there more than 5 terms?

Crossrefs

Programs

Extensions

Corrected and edited by Eric Rowland, Jan 27 2019
Showing 1-8 of 8 results.