cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167667 Expansion of (1-x+4*x^2)/(1-2*x)^2.

Original entry on oeis.org

1, 3, 12, 36, 96, 240, 576, 1344, 3072, 6912, 15360, 33792, 73728, 159744, 344064, 737280, 1572864, 3342336, 7077888, 14942208, 31457280, 66060288, 138412032, 289406976, 603979776, 1258291200, 2617245696, 5435817984, 11274289152, 23353884672, 48318382080
Offset: 0

Views

Author

Philippe Deléham, Nov 08 2009

Keywords

Comments

Also the number of maximal and maximum cliques in the n-cube-connected cycles graph for n > 3. - Eric W. Weisstein, Dec 01 2017

Crossrefs

Cf. A167666.

Programs

  • Magma
    [1] cat [3*n*2^(n-1): n in [1..30]]; // Vincenzo Librandi, Mar 21 2015
  • Maple
    A167667:=n->3*n*2^(n-1): (1,seq(A167667(n), n=1..30)); # Wesley Ivan Hurt, Mar 20 2015
  • Mathematica
    CoefficientList[Series[(1 - x + 4*x^2)/(1 - 2*x)^2, {x, 0, 30}], x] (* Wesley Ivan Hurt, Mar 20 2015 *)
    Join[{1}, LinearRecurrence[{4, -4}, {3, 12}, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
    Join[{1}, Table[3 2^(n - 1) n, {n, 20}]] (* Eric W. Weisstein, Dec 01 2017 *)
    CoefficientList[Series[(1 - x + 4 x^2)/(-1 + 2 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
  • PARI
    Vec((1-x+4*x^2)/(1-2*x)^2 + O(x^50)) \\ Michel Marcus, Mar 21 2015
    
  • PARI
    a(n) = if(n==0, 1, 3*n*2^(n-1)); \\ Altug Alkan, May 16 2018
    

Formula

a(0)=1, a(n) = 3*n*2^(n-1) for n>0.
a(0)=1, a(1)=3, a(2)=12, a(n) = 4*a(n-1)-4*a(n-2) for n>2.
a(n) = Sum_{k=0..n} A167666(n,k) * 2^k.
G.f.: 1 + 3*x*G(0)/2, where G(k)= 1 + 1/(1 - x/(x + (k+1)/(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
a(0)=1, a(n) = Sum_{i=0..n} binomial(n,i) * (2n-i). - Wesley Ivan Hurt, Mar 20 2015