cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003817 a(0) = 0, a(n) = a(n-1) OR n.

Original entry on oeis.org

0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63
Offset: 0

Views

Author

Keywords

Comments

Also, 0+1+2+...+n in lunar arithmetic in base 2 written in base 10. - N. J. A. Sloane, Oct 02 2010
For n>0: replace all 0's with 1's in binary representation of n. - Reinhard Zumkeller, Jul 14 2003

Crossrefs

This is Guy Steele's sequence GS(6, 6) (see A135416).
Cf. A167832, A167878. - Reinhard Zumkeller, Nov 14 2009
Cf. A179526; subsequence of A007448. - Reinhard Zumkeller, Jul 18 2010
Cf. A265705.

Programs

  • Haskell
    import Data.Bits ((.|.))
    a003817 n = if n == 0 then 0 else 2 * a053644 n - 1
    a003817_list = scanl (.|.) 0 [1..] :: [Integer]
    -- Reinhard Zumkeller, Dec 08 2012, Jan 15 2012
    
  • Maple
    A003817 := n -> n + Bits:-Nand(n, n):
    seq(A003817(n), n=0..61); # Peter Luschny, Sep 23 2019
  • Mathematica
    a[0] = 0; a[n_] := a[n] = BitOr[ a[n-1], n]; Table[a[n], {n, 0, 61}] (* Jean-François Alcover, Dec 19 2011 *)
    nxt[{n_,a_}]:={n+1,BitOr[a,n+1]}; Transpose[NestList[nxt,{0,0},70]] [[2]] (* Harvey P. Dale, May 06 2016 *)
    2^BitLength[Range[0,100]]-1 (* Paolo Xausa, Feb 08 2024 *)
  • PARI
    a(n)=1<<(log(2*n+1)\log(2))-1 \\ Charles R Greathouse IV, Dec 08 2011
    
  • Python
    def a(n): return 0 if n==0 else 1 + 2*a(int(n/2)) # Indranil Ghosh, Apr 28 2017
    
  • Python
    def A003817(n): return (1<Chai Wah Wu, Jul 17 2024

Formula

a(n) = a(n-1) + n*(1-floor(a(n-1)/n)). If 2^(k-1) <= n < 2^k, a(n) = 2^k - 1. - Benoit Cloitre, Aug 25 2002
a(n) = 1 + 2*a(floor(n/2)) for n > 0. - Benoit Cloitre, Apr 04 2003
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*x^2^k. - Ralf Stephan, Apr 18 2003
a(n) = 2*A053644(n)-1 = A092323(n) + A053644(n). - Reinhard Zumkeller, Feb 15 2004; corrected by Anthony Browne, Jun 26 2016
a(n) = OR{k OR (n-k): 0<=k<=n}. - Reinhard Zumkeller, Jul 15 2008
For n>0: a(n+1) = A035327(n) + n = A035327(n) XOR n. - Reinhard Zumkeller, Nov 14 2009
A092323(n+1) = floor(a(n)/2). - Reinhard Zumkeller, Jul 18 2010
a(n) = A265705(n,0) = A265705(n,n). - Reinhard Zumkeller, Dec 15 2015
a(n) = A062383(n) - 1.
G.f. A(x) satisfies: A(x) = 2*A(x^2)*(1 + x) + x/(1 - x). - Ilya Gutkovskiy, Aug 31 2019
a(n) >= A175039(n) - Austin Shapiro, Dec 29 2022

A167831 Largest m<=n such that no carry occurs when adding m to n in decimal arithmetic.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 10, 11, 12, 13, 14, 14, 13, 12, 11, 10, 20, 21, 22, 23, 24, 24, 23, 22, 21, 20, 30, 31, 32, 33, 34, 34, 33, 32, 31, 30, 40, 41, 42, 43, 44, 44, 43, 42, 41, 40, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2009

Keywords

Comments

A167832(n) = a(n) + n.

Crossrefs

Cf. A167877, A035327 for the ternary and binary cases.
Cf. A031298.

Programs

  • Haskell
    a167831 n = head [x | let ds = a031298_row n, x <- [n, n-1 ..],
                          all (< 10) $ zipWith (+) ds (a031298_row x)]
    -- Reinhard Zumkeller, Mar 15 2014

A167878 A167877(n) + n.

Original entry on oeis.org

0, 2, 2, 6, 8, 8, 8, 8, 8, 18, 20, 20, 24, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 54, 56, 56, 60, 62, 62, 62, 62, 62, 72, 74, 74, 78, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2009

Keywords

Comments

No carry occurs when calculating a(n) by adding A167877(n) to n in ternary arithmetic.

Crossrefs

Cf. A007089, see A167832, A003817 for the decimal and binary cases.

Programs

A251984 Smallest number such that a carry occurs when adding it to n in decimal representation.

Original entry on oeis.org

9, 8, 7, 6, 5, 4, 3, 2, 1, 90, 9, 8, 7, 6, 5, 4, 3, 2, 1, 80, 9, 8, 7, 6, 5, 4, 3, 2, 1, 70, 9, 8, 7, 6, 5, 4, 3, 2, 1, 60, 9, 8, 7, 6, 5, 4, 3, 2, 1, 50, 9, 8, 7, 6, 5, 4, 3, 2, 1, 40, 9, 8, 7, 6, 5, 4, 3, 2, 1, 30, 9, 8, 7, 6, 5, 4, 3, 2, 1, 20, 9, 8, 7, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2014

Keywords

Crossrefs

Programs

  • Haskell
    a251984 n = if d > 0 then 10 - d else 10 * a251984 n'
                where (n',d) = divMod n 10
    
  • Python
    def a(n):
        s = str(n)
        t = s.strip('0')
        return (10 - int(t)%10) * 10**(len(s) - len(t))
    print([a(n) for n in range(1, 85)]) # Michael S. Branicky, Sep 08 2021

Formula

a(n) = (10 - A004151(n) mod 10) * 10^A122840(n).
Showing 1-4 of 4 results.