cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A168029 a(n) = n*(n^6 + 1)/2.

Original entry on oeis.org

0, 1, 65, 1095, 8194, 39065, 139971, 411775, 1048580, 2391489, 5000005, 9743591, 17915910, 31374265, 52706759, 85429695, 134217736, 205169345, 306110025, 446935879, 640000010, 900544281, 1247178955, 1702412735, 2293235724, 3051757825, 4015905101
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n*(n^m + 1)/2: A001477 (m=0), A000217 (m=1), A006003 (m=2), A027441 (m=3), A021003 (m=4), A167963 (m=5), this sequence (m=6), A168067 (m=7), A168116 (m=8), A168118 (m=9), A168119 (m=10).

Programs

  • Magma
    [n*(n^6+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
    
  • Mathematica
    CoefficientList[Series[x(1 +57x +603x^2 +1198x^3 +603x^4 +57x^5 +x^6)/ (1-x)^8, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 10 2014 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1}, {0,1,65,1095,8194,39065, 139971,411775}, 41] (* Harvey P. Dale, Jan 24 2019 *)
  • SageMath
    [n*(n^6+1)/2 for n in range(41)] # G. C. Greubel, Jan 12 2023

Formula

G.f.: x*(1+57*x+603*x^2+1198*x^3+603*x^4+57*x^5+x^6)/(1-x)^8. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (x/2)*(2 +63*x +301*x^2 +350*x^3 +140*x^4 +21*x^5 +x^6)*exp(x). - G. C. Greubel, Jan 12 2023

Extensions

More terms from Vincenzo Librandi, Dec 10 2014

A167963 a(n) = n*(n^5 + 1)/2.

Original entry on oeis.org

0, 1, 33, 366, 2050, 7815, 23331, 58828, 131076, 265725, 500005, 885786, 1492998, 2413411, 3764775, 5695320, 8388616, 12068793, 17006121, 23522950, 32000010, 42883071, 56689963, 74017956, 95551500, 122070325, 154457901, 193710258, 240945166, 297411675
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Sequences of the form n*(n^m + 1)/2: A001477 (m=0), A000217 (m=1), A006003 (m=2), A027441 (m=3), A021003 (m=4), this sequence (m=5), A168029 (m=6), A168067 (m=7), A168116 (m=8), A168118 (m=9), A168119 (m=10).

Programs

  • Magma
    [n*(n^5+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
    
  • Maple
    A167963:=n->n*(n^5+1)/2; seq(A167963(n), n=0..100); # Wesley Ivan Hurt, Nov 23 2013
  • Mathematica
    Table[n(n^5+1)/2, {n,0,100}] (* Wesley Ivan Hurt, Nov 23 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,33,366,2050,7815,23331},30] (* Harvey P. Dale, Dec 09 2014 *)
    CoefficientList[Series[x (1 + 26 x + 156 x^2 + 146 x^3 + 31 x^4) / (1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2014 *)
  • SageMath
    [n*(n^5+1)/2 for n in range(41)] # G. C. Greubel, Jan 17 2023

Formula

G.f.: x*(1 + 26*x + 156*x^2 + 146*x^3 + 31*x^4)/(1-x)^7. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (1/2)*x*(2 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Jan 17 2023
Showing 1-2 of 2 results.