A168178 a(n) = n^3*(n^2 + 1)/2.
0, 1, 20, 135, 544, 1625, 3996, 8575, 16640, 29889, 50500, 81191, 125280, 186745, 270284, 381375, 526336, 712385, 947700, 1241479, 1604000, 2046681, 2582140, 3224255, 3988224, 4890625, 5949476, 7184295, 8616160, 10267769, 12163500
Offset: 0
References
- C. Barrientos, Graceful labelings of cyclic snakes, Ars Combin., 60(2001), 85-96.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..595
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
GAP
List([0..40], n -> n^3*(1 +n^2)/2); # G. C. Greubel, Nov 15 2018
-
Magma
[n^3*(n^2+1)/2: n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
-
Mathematica
Table[(n^5+n^3)/2,{n,0,80}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *) LinearRecurrence[{6, -15, 20, -15, 6, -1},{0, 1, 20, 135, 544, 1625},40] (* Robert A. Russell, Nov 14 2018 *)
-
PARI
vector(40, n, n--; n^3*(1+n^2)/2) \\ G. C. Greubel, Nov 15 2018
-
Sage
[n^3*(1 + n^2)/2 for n in range(40)] # G. C. Greubel, Nov 15 2018
Formula
From Robert A. Russell, Nov 14 2018: (Start)
G.f.: (Sum_{j=1..5} S2(5,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..3} S2(3,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..4} A145882(5,k) * x^k / (1-x)^6.
E.g.f.: (Sum_{k=1..5} S2(5,k)*x^k + Sum_{k=1..3} S2(3,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>5, a(n) = Sum_{j=1..6} -binomial(j-7,j) * a(n-j). (End)
From G. C. Greubel, Nov 15 2018: (Start)
G.f.: x*(1 + 14*x + 30*x^2 + 14*x^3 + x^4)/(1-x)^6.
E.g.f.: x*(2 + 18*x + 26*x^2 + 10*x^3 + x^4)*exp(x)/2. (End)
Comments