cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168182 Characteristic function of numbers that are not multiples of 9.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 30 2009

Keywords

Examples

			G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^10 + x^11 + x^12 + x^13 + ...
		

Crossrefs

Programs

Formula

Euler transform of length 9 sequence [1, 0, 0, 0, 0, 0, 0, -1, 1]. - Michael Somos, Mar 22 2011
Moebius transform is length 9 sequence [1, 0, 0, 0, 0, 0, 0, 0, -1]. - Michael Somos, Mar 22 2011
Expansion of x * (1 - x^8) / ((1 - x) * (1 - x^9)) in powers of x. - Michael Somos, Mar 22 2011
Multiplicative with a(p^e) = (if p=3 then 0^(e-1) else 1), p prime and e>0.
a(n) = a(n+9) = a(-n) for all n in Z.
a(n) = A000007(A010878(n)).
a(A168183(n)) = 1. a(A008591(n)) = 0.
A033441(n) = Sum_{k=0..n} a(k)*(n-k).
G.f.: -x*(1+x)*(1+x^2)*(1+x^4) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). - R. J. Mathar, Jan 07 2011
Dirichlet g.f. (1-3^(-2s))*zeta(s). - R. J. Mathar, Mar 06 2011
For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = 1 - A267142(n). - Antti Karttunen, Oct 07 2017