cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168233 a(n) = 3*n - a(n-1) - 1 for n>0, a(1)=1.

Original entry on oeis.org

1, 4, 4, 7, 7, 10, 10, 13, 13, 16, 16, 19, 19, 22, 22, 25, 25, 28, 28, 31, 31, 34, 34, 37, 37, 40, 40, 43, 43, 46, 46, 49, 49, 52, 52, 55, 55, 58, 58, 61, 61, 64, 64, 67, 67, 70, 70, 73, 73, 76, 76, 79, 79, 82, 82, 85, 85, 88, 88, 91, 91, 94, 94, 97, 97, 100, 100, 103, 103, 106
Offset: 1

Views

Author

Vincenzo Librandi, Nov 21 2009

Keywords

Crossrefs

Programs

  • Magma
    [(6*n + 3*(-1)^n + 1)/4: n in [1..70]]; // Vincenzo Librandi, Feb 02 2013
  • Maple
    a:=n->3*floor(n/2)+1; seq(a(k), k = 1..70); # Wesley Ivan Hurt, Feb 01 2013
  • Mathematica
    CoefficientList[Series[(1 + 3*x - x^2)/((1+x) * (1-x)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
    LinearRecurrence[{1,1,-1},{1,4,4},80] (* Harvey P. Dale, Oct 13 2015 *)

Formula

From Bruno Berselli, Nov 15 2010: (Start)
a(n) = (6*n + 3*(-1)^n + 1)/4.
G.f.: x*(1 + 3*x - x^2)/((1+x)*(1-x)^2).
a(n) = a(n-1) + a(n-2) - a(n-3), for n>3.
a(n) + a(n-1) = A016789(n-1) for n>1.
a(n) - a(n-1-2*k) = A010674(n-1) + A008585(k) for n>2*k+1 and k in A001477.
a(n) - a(n-2*k) = A008585(k) for n>2*k and k in A001477. (End)
a(n+1) = A016777(floor((n+1)/2)). - R. J. Mathar, Jan 03 2011
E.g.f.: (1/4)*(3 - 4*exp(x) + (1 + 6*x)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 16 2016