cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A171710 Union of A168234 and A171219, sorted.

Original entry on oeis.org

3, 3, 5, 5, 13, 13, 13, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89
Offset: 1

Views

Author

Paul Curtz, Dec 16 2009

Keywords

Comments

Consider a table T(n,k) similar to A168142 = {2,1}, {8,7,6,...,2,1}, {18,17,...,2,1},... that repeats each row. Thus T(n,k) = {2,1}, {2,1}, {8,7,6,...,2,1}, {8,7,6,...,2,1}, {18,17,...,2,1}, etc. The rows of T(n,k) decrement from 2*ceiling(n/2)^2 to 1. Then we can construct the table of atomic numbers in the Janet periodic table A138509(n) = T(n,k) + a(n), with k=2*ceiling(n/2)^2 - 1 down to 1 by step -1.

Crossrefs

Cf. A138509 (Janet periodic table, rows n > 1 end in the repeated numbers in this sequence), A168234 (odd rows), A168380 (repeated numbers k - 1), A171219 (even rows), A172002 (smallest values of rows n > 1 are the repeated numbers in this sequence).

Programs

  • Mathematica
    Table[(n + 1) (3 + 2 n^2 + 4 n - 3 (-1)^n)/12 + 1, {n, 7}, {k, 2 Ceiling[n/2]^2}] // Flatten (* Michael De Vlieger, Jul 20 2016 *)

Formula

May be regarded as an irregular triangle read by rows, defined by T(n,k) = A168380(n) + 1, with 1 <= k <= ceiling(n/2)^2. - Michael De Vlieger, Jul 20 2016

A168388 First number in the n-th row of A172002.

Original entry on oeis.org

1, 3, 5, 13, 21, 39, 57, 89, 121, 171, 221, 293, 365, 463, 561, 689, 817, 979, 1141, 1341, 1541, 1783, 2025, 2313, 2601, 2939, 3277, 3669, 4061, 4511, 4961, 5473, 5985, 6563, 7141, 7789, 8437, 9159, 9881, 10681, 11481, 12363, 13245, 14213, 15181, 16239, 17297
Offset: 1

Views

Author

Paul Curtz, Nov 24 2009

Keywords

Crossrefs

Cf. A168234.

Programs

Formula

a(2*n+1) = A166464(n) a(2*n) = A166911(n).
a(n+1) - a(n) = A093907(n-1), n>1.
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
G.f.: x*(1 - x^2 + 2*x)*(1 - x + x^2 + x^3)/( (1+x)^2 * (x-1)^4).
a(n+1) = A168380(n)+1.
From G. C. Greubel, Jul 19 2016: (Start)
a(n) = (12 + n + 3*(-1)^n*n + 2*n^3)/12.
E.g.f.: (1/12)*( -3*x - 12*exp(x) + (12 + 3*x + 6*x^2 + 2*x^3)*exp(2*x) )*exp(-x). (End)

Extensions

Edited and extended by R. J. Mathar, Mar 25 2010

A168574 a(n) = (4*n + 3)*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 7, 33, 95, 209, 391, 657, 1023, 1505, 2119, 2881, 3807, 4913, 6215, 7729, 9471, 11457, 13703, 16225, 19039, 22161, 25607, 29393, 33535, 38049, 42951, 48257, 53983, 60145, 66759, 73841, 81407, 89473, 98055, 107169, 116831, 127057, 137863, 149265, 161279
Offset: 0

Views

Author

Paul Curtz, Nov 30 2009

Keywords

Comments

Binomial transform of quasi-finite sequence 1, 6, 20, 16, 0, 0, ... (0 continued).
a(n+1) is the sum of the first and last number at the bottom (2nd row) of each block in A172002, 3+4, 13+20, 39+56, ...

Crossrefs

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 16.
a(n) = A168582(2*n+1) .
a(n+1) = A166911(n) + A002492(n+1).
G.f.: (1 + 3*x + 11*x^2 + x^3)/(1 - x)^4.
E.g.f.: (1/3)*(3 + 18*x + 30*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016

Extensions

Edited and extended by R. J. Mathar, Mar 25 2010

A171219 A138101(n)+A168142(n).

Original entry on oeis.org

5, 5, 21, 21, 21, 21, 21, 21, 21, 21, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 1

Views

Author

Paul Curtz, Dec 05 2009

Keywords

Comments

This here basically repeats entries A168388(2k+1) 2*k^2 times for k=1,2,....
The construction is similar to A168234.

Extensions

Comments tightened - R. J. Mathar, Nov 24 2010
Showing 1-4 of 4 results.