A168244 a(n) = 1 + 3*n - 2*n^2.
1, 2, -1, -8, -19, -34, -53, -76, -103, -134, -169, -208, -251, -298, -349, -404, -463, -526, -593, -664, -739, -818, -901, -988, -1079, -1174, -1273, -1376, -1483, -1594, -1709, -1828, -1951, -2078, -2209, -2344, -2483, -2626, -2773, -2924, -3079, -3238, -3401, -3568, -3739, -3914, -4093, -4276, -4463, -4654, -4849
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[1+3*n-2*n^2: n in [1..50]]; // Vincenzo Librandi, Jul 10 2012
-
Mathematica
Table[-(n + (n + 1)^2 - 3)/2, {n, -1, 200, 2}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *) LinearRecurrence[{3,-3,1},{2,-1,-8},60] (* Harvey P. Dale, Jun 06 2015 *)
-
PARI
a(n) = 1 + 3*n - 2*n^2; \\ Altug Alkan, Apr 09 2016
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 1 + x*(2-7*x+x^2)/(1-x)^3.
a(-n) = -A091823(n), a(0) = 1. - Michael Somos, May 11 2014
E.g.f.: (1 + x - 2*x^2)*exp(x). - G. C. Greubel, Apr 09 2016
a(n) = a(n-2) + (-2)*sqrt((-8)*a(n-1) + 17), n > 1. - Klaus Purath, Jul 08 2021
Extensions
Edited, definition simplified, sequence extended beyond a(5) by R. J. Mathar, Nov 23 2009
a(0)=1 added by N. J. A. Sloane, Apr 09 2016
Comments