cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168251 a(n) = n^2 if n is odd, n^2*2^(n-2) if n is even.

Original entry on oeis.org

0, 1, 4, 9, 64, 25, 576, 49, 4096, 81, 25600, 121, 147456, 169, 802816, 225, 4194304, 289, 21233664, 361, 104857600, 441, 507510784, 529, 2415919104, 625, 11341398016, 729, 52613349376, 841, 241591910400, 961, 1099511627776, 1089, 4964982194176, 1225
Offset: 0

Views

Author

Paul Curtz, Nov 21 2009

Keywords

Comments

This is the main diagonal of the following array defined by T(n,2k+1) = A168077(k) for odd column indices and T(n,2k) = A168077(2k)*2^n for even column indices:
0, 1, 1, 9, 4, 25, ... A168077
0, 1, 2, 9, 8, 25, ... A129194
0, 1, 4, 9, 16,25, ... A000290
0, 1, 8, 9, 32,25, ...
0, 1, 16,9, 64,25, ... A154615

Programs

  • Magma
    [(n^2)*2^((n-2)*(1+(-1)^n) div 2): n in [0..40]]; // Vincenzo Librandi, Jul 17 2016
  • Maple
    A168251 := proc(n)
            if type(n,'even') then
                    n^2*2^n/4 ;
            else
                    n^2 ;
            end if;
    end proc: # R. J. Mathar, Sep 20 2011
  • Mathematica
    Table[(n^2)*2^((n - 2)*(1 + (-1)^n)/2), {n, 0, 50}] (* G. C. Greubel, Jul 16 2016 *)
    Table[If[OddQ[n],n^2,n^2 2^(n-2)],{n,0,50}] (* or *) LinearRecurrence[{0,15,0,-87,0,245,0,-348,0,240,0,-64},{0,1,4,9,64,25,576,49,4096,81,25600,121},41] (* Harvey P. Dale, May 14 2022 *)

Formula

a(2n) = A128782(n). a(2n+1) = A016754(n).
a(n) = +15*a(n-2) -87*a(n-4) +245*a(n-6) -348*a(n-8) +240*a(n-10) - 64*a(n-12).
G.f.: x*(1 + 4*x - 6*x^2 + 4*x^3 - 23*x^4 - 36*x^5 + 212*x^6 + 44*x^7 - 336*x^8 - 16*x^9 - 64*x^10) / ( (1-x)^3*(2*x+1)^3*(1-2*x)^3*(1+x)^3 ). - R. J. Mathar, Sep 20 2011
a(n) = (n^2)*2^((n-2)*(1+(-1)^n)/2). - Luce ETIENNE, Feb 03 2015