cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A177061 Primes p formed from single-digit primes only, each used at most once.

Original entry on oeis.org

2, 3, 5, 7, 23, 37, 53, 73, 257, 523, 2357, 2753, 3257, 3527, 5237, 5273, 7253, 7523
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 02 2010

Keywords

Comments

List of (p,i): (2,1), (3,2), (5,3), (7,4), (23,9), (37,12), (53,16), (73,21), (257,55), (523,99), (2357,350), (2753,402), (3257,460), (3527,492), (5237,697), (5273, 699), (7253,928), (7523,953).
There are exactly eight primes whose digits are primes in strictly increasing order: 2, 3, 5, 7, 23, 37, 257, 2357. - James C. McMahon, Jul 04 2023
There are exactly six primes whose digits are primes in strictly decreasing order: 2, 3, 5, 7, 53, 73. - James C. McMahon, Aug 09 2023

Examples

			3//7 = 37 = prime(12) is the 6th term.
2//3//5//7 = 2357 = prime(350) is the 11th term
p = 7//5//2//3 = 7523 = prime(953) = A033548(59) is the last term.
		

References

  • E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/Berlin 1982

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Flatten[Permutations/@Subsets[{2,3,5,7}],1],PrimeQ]// Union (* Harvey P. Dale, Sep 08 2021 *)
  • PARI
    isok(p) = {my(d = digits(p)); if (#d == #Set(d) && vecmin(apply(isprime, d)) == 1, return (1)); return(0);}
    lista() = {forprime(p=1, 100000, if (isok(p), print1(p, ", ")););} \\ Michel Marcus, Aug 07 2020

Extensions

Edited by Assoc. Eds. OEIS, May 09 2010
Missing term 5273 added by Eren Donmez, Aug 07 2020
Cross reference added by Harvey P. Dale, Sep 09 2021

A172315 Primes of the form 2^i*3^j - 1 with i + j = 13.

Original entry on oeis.org

8191, 27647, 62207, 139967, 314927, 472391, 1062881
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Jan 31 2010

Keywords

Comments

Note that bases 2 = prime(1), 3 = prime(2)
13 = prime(2 x 3) = prime(prime(1) x prime(2))
Smallest term 8191 is the 5th Mersenne prime
It is a finite "FUN" sequence with 7 = prime(4) terms

Examples

			8191 = 2^13 - 1 = prime(1028)
27647 = 2^10 x 3^3 - 1 = prime(3016) = prime(2^3 x 13 x 29)
62207 = 2^8 x 3^5 - 1 = prime(6253) = prime(13^ 2 x 37)
139967 = 2^6 x 3^7 - 1 = prime(13005)
314927 = 2^4 x 3^9 - 1 = prime(27191), index is prime(2978)
472391 = 2^3 x 3^10 - 1 = prime(39419), index is prime(4150)
1062881 = 2 x 3^12 - 1 = prime(83024)
		

References

  • Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983

Crossrefs

Programs

  • Mathematica
    Select[Union[Flatten[{2^#[[1]] 3^#[[2]]-1,2^#[[2]] 3^#[[1]]-1}&/@ Table[ {n,13-n},{n,0,13}]]],PrimeQ] (* Harvey P. Dale, Jan 11 2016 *)

A347612 Semiprimes formed from single-digits primes only, each used at most once.

Original entry on oeis.org

25, 35, 57, 235, 237, 253, 327, 527, 537, 573, 723, 753, 2537, 2573, 2735, 5327, 5723, 7235
Offset: 1

Views

Author

Harvey P. Dale, Sep 08 2021

Keywords

Examples

			527 is a semiprime and its non-repeating digits are primes.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits/@Flatten[Permutations/@Subsets[ {2,3,5,7}],1],PrimeOmega[ #] == 2&]//Union
Showing 1-3 of 3 results.