cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168559 a(n) = n^2 + a(n-1), with a(1)=0.

Original entry on oeis.org

0, 4, 13, 29, 54, 90, 139, 203, 284, 384, 505, 649, 818, 1014, 1239, 1495, 1784, 2108, 2469, 2869, 3310, 3794, 4323, 4899, 5524, 6200, 6929, 7713, 8554, 9454, 10415, 11439, 12528, 13684, 14909, 16205, 17574, 19018, 20539, 22139, 23820, 25584
Offset: 1

Views

Author

Vincenzo Librandi, Nov 30 2009

Keywords

Comments

Sum of the first n perfect squares (A000330), minus 1.

Crossrefs

Programs

  • Haskell
    a168559 n = a168559_list !! (n-1)
    a168559_list = scanl (+) 0 $ drop 2 a000290_list
    -- Reinhard Zumkeller, Feb 03 2012
    
  • Mathematica
    k=-1;lst={};Do[k=n^2+k;AppendTo[lst,k],{n,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Dec 05 2009 *)
    RecurrenceTable[{a[1]==0,a[n]==n^2+a[n-1]},a,{n,50}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,4,13,29},50] (* Harvey P. Dale, Dec 07 2013 *)
    Accumulate[Range[50]^2] - 1 (* Paolo Xausa, Oct 04 2024 *)
  • PARI
    a(n)=n^3/3+n^2/2+n/6-1 \\ Charles R Greathouse IV, Oct 16 2015

Formula

a(n) = n^3/3 + n^2/2 + n/6 - 1. - Gary Detlefs, Jun 30 2010
For n>1, a(n) = 2^2 + 3^2 + ... + n^2. - Washington Bomfim, Feb 15 2011
G.f.: x*(4-3*x+x^2)/(1-x)^4. - Colin Barker, Feb 03 2012
a(n) = A000330(n) - 1. - Reinhard Zumkeller, Feb 03 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) with a(1)=0, a(2)=4, a(3)=13, a(4)=29. - Harvey P. Dale, Dec 07 2013