cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168566 a(n) = (n-1)*(n+2)*(n^2 + n + 2)/4.

Original entry on oeis.org

0, 8, 35, 99, 224, 440, 783, 1295, 2024, 3024, 4355, 6083, 8280, 11024, 14399, 18495, 23408, 29240, 36099, 44099, 53360, 64008, 76175, 89999, 105624, 123200, 142883, 164835, 189224, 216224, 246015, 278783, 314720, 354024, 396899, 443555, 494208
Offset: 1

Views

Author

Vincenzo Librandi, Nov 30 2009

Keywords

Comments

The products of two consecutive numbers in this sequence may be evaluated in terms of the Frobenius numbers for 5 consecutive integers, A138985(n) = F(n): for n>0, a(2n-1)*a(2n) = F(4n^2-2)^2 - (2n)^2; a(2n)*a(2n+1) = F(4n^2+4n)^2 - (2n+1)^2. - Charlie Marion, Jan 23 2012

Crossrefs

Cf. A000578 (first differences), A000217, A000537, A138985.

Programs

Formula

G.f.: x^2*(-8 + 5*x - 4*x^2 + x^3)/(x-1)^5. - R. J. Mathar, Jan 04 2011
a(n) = A000217(n)^2 - 1 = A000537(n)-1. - Charlie Marion, Sep 27 2011
From G. C. Greubel, Jul 26 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: (1/4)*(4 - (4 - 4*x + 14*x^2 + 8*x^3)*exp(x)). (End)
Sum_{n>=2} 1/a(n) = 49/36 - tanh(sqrt(7)*Pi/2)*Pi/sqrt(7). - Amiram Eldar, Mar 02 2023