A168566 a(n) = (n-1)*(n+2)*(n^2 + n + 2)/4.
0, 8, 35, 99, 224, 440, 783, 1295, 2024, 3024, 4355, 6083, 8280, 11024, 14399, 18495, 23408, 29240, 36099, 44099, 53360, 64008, 76175, 89999, 105624, 123200, 142883, 164835, 189224, 216224, 246015, 278783, 314720, 354024, 396899, 443555, 494208
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[(n-1)*(n+2)*(n^2+n+2)/4: n in [1..50]];
-
Mathematica
s=0;lst={s};Do[s+=n^3;AppendTo[lst,s],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Apr 27 2010 *) Table[(n-1)*(n+2)*(n^2 + n + 2)/4, {n,1,25}] (* G. C. Greubel, Jul 26 2016 *) LinearRecurrence[{5,-10,10,-5,1},{0,8,35,99,224},40] (* Harvey P. Dale, Jan 21 2019 *)
-
PARI
a(n)=(n-1)*(n+2)*(n^2+n+2)/4 \\ Charles R Greathouse IV, Jul 26 2016
Formula
G.f.: x^2*(-8 + 5*x - 4*x^2 + x^3)/(x-1)^5. - R. J. Mathar, Jan 04 2011
From G. C. Greubel, Jul 26 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: (1/4)*(4 - (4 - 4*x + 14*x^2 + 8*x^3)*exp(x)). (End)
Sum_{n>=2} 1/a(n) = 49/36 - tanh(sqrt(7)*Pi/2)*Pi/sqrt(7). - Amiram Eldar, Mar 02 2023
Comments