A168592
G.f.: exp( Sum_{n>=1} A082758(n)*x^n/n ), where A082758(n) = sum of the squares of the trinomial coefficients in row n of triangle A027907.
Original entry on oeis.org
1, 3, 14, 80, 509, 3459, 24579, 180389, 1356743, 10402493, 81004516, 638886082, 5093081983, 40971735401, 332187974718, 2711668091448, 22267979870143, 183830653156341, 1524747465249750, 12700172705956876, 106187411693668179
Offset: 0
G.f.: A(x) = 1 + 3*x + 14*x^2 + 80*x^3 + 509*x^4 + 3459*x^5 + ...
log(A(x)) = 3*x + 19*x^2/2 + 141*x^3/3 + 1107*x^4/4 + 8953*x^5/5 + ... + A082758(n)*x^n/n + ...
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0, `if`(x=0, 1,
add(b(x-i, y-1), i=0..x) +add(b(x-1, y-j), j=0..y)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Oct 07 2015
# second Maple program:
a:= proc(n) option remember; `if`(n<4, [1, 3, 14, 80][n+1],
((10*(n+1))*(16*n^3-20*n^2-n-1) *a(n-1)
+(-944*n^4+2596*n^3-1924*n^2+236*n+30) *a(n-2)
+(90*(n-2))*(16*n^3-52*n^2+45*n-6) *a(n-3)
-(81*(2*n-5))*(n-2)*(n-3)*(4*n-1) *a(n-4))/
((n+1)*(4*n-5)*(2*n+1)*(n+2)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Oct 07 2015
-
(1/x)*InverseSeries[x*(1 - x)^2/((1 + x)^2*(1 - x + x^2)) + O[x]^30, x] // CoefficientList[#, x]& (* Jean-François Alcover, Jun 09 2018 *)
-
{a(n)=if(n==0,1,polcoeff(exp(sum(m=1,n,sum(k=0,2*m, polcoeff((1+x+x^2)^m,k)^2)*x^m/m) +x*O(x^n)),n))}
-
{a(n)=polcoeff(1/x*serreverse(x*(1-x)^2/((1+x)^2*(1-x+x^2)+x*O(x^n))),n)}
A216584
a(n) = A002426(n)*A000984(n); product of central trinomial coefficients and central binomial coefficients.
Original entry on oeis.org
1, 2, 18, 140, 1330, 12852, 130284, 1348776, 14247090, 152618180, 1654120468, 18096447096, 199536967084, 2214714164600, 24720932068200, 277289164574640, 3123590583844530, 35318969120870820, 400692715550057700, 4559427798654821400, 52020436064931914580
Offset: 0
L.g.f.: L(x) = 2*x + 18*x^2/2 + 140*x^3/3 + 1330*x^4/4 + 12852*x^5/5 + 130284*x^6/6 + ...
where
exp(L(x)) = 1 + 2*x + 11*x^2 + 66*x^3 + 485*x^4 + 3842*x^5 + 32712*x^6 + ... + A216585(n)*x^n/n + ...
The central trinomial coefficients (A002426) begin:
[1, 1, 3, 7, 19, 51, 141, 393, 1107, 3139, 8953, 25653, 73789, ...];
The central binomial coefficients (A000984) begin:
[1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, ...].
-
Table[Binomial[2*n, n]*Sum[ Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}], {n,0,50}] (* G. C. Greubel, Feb 27 2017 *)
-
{a(n) = polcoeff((1+x+x^2)^n,n) * polcoeff((1+2*x+x^2)^n,n)}
-
{a(n)=binomial(2*n,n)*sum(k=0,n\2,binomial(n,2*k)*binomial(2*k,k))}
for(n=0,21,print1(a(n),", "))
A253255
G.f. satisfies: A(x) = (1 - x^3*A(x)^3)^2 / (1 - x*A(x))^4.
Original entry on oeis.org
1, 4, 26, 202, 1731, 15780, 150117, 1473292, 14807363, 151638550, 1576616125, 16598802248, 176599380271, 1895767748376, 20508188211018, 223348309510194, 2446792909432683, 26944972018189698, 298111489130625351, 3312016395569631402, 36935315970911333184, 413308467174788509668
Offset: 0
G.f.: A(x) = 1 + 4*x + 26*x^2 + 202*x^3 + 1731*x^4 + 15780*x^5 +...
where A(x) = (1 - x^3*A(x)^3)^2 / (1 - x*A(x))^4.
The logarithm begins:
log(A(x)) = 4*x + 36*x^2/2 + 358*x^3/3 + 3748*x^4/4 + 40404*x^5/5 + 443886*x^6/6 + 4941654*x^7/7 +...+ A168595(n)*x^n/n +...
-
{a(n) = local(A=1); A = (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
{a(n) = local(A=1); A = exp( sum(k=1,n+1, A168595(k)*x^k/k) +x*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A253256
G.f. satisfies: A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.
Original entry on oeis.org
1, 2, 11, 79, 647, 5727, 53367, 515802, 5123303, 51977485, 536320688, 5610909773, 59379328267, 634538481389, 6837466955193, 74210071037031, 810527496757335, 8901979424068377, 98253966680382102, 1089260346498608721, 12123804391067414676, 135427509933882292680, 1517725698030921469890
Offset: 0
G.f.: A(x) = 1 + 2*x + 11*x^2 + 79*x^3 + 647*x^4 + 5727*x^5 + 53367*x^6 +...
where A(x) = (1 - x^3*A(x)^6) / (1 - x*A(x)^2)^2.
The logarithm begins:
log(A(x)) = 2*x + 18*x^2 + 179*x^3 + 1874*x^4 + 20202*x^5 + 221943*x^6 + 2470827*x^7/7 +...+ A168595(n)/2*x^n/n +...
-
{a(n) = local(A=1); A = sqrt( (1/x)*serreverse( x*(1-x)^4/(1-x^3)^2 +x^2*O(x^n))); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
-
{A168595(n) = sum(k=0, 2*n, binomial(2*n, k) * polcoeff((1+x+x^2)^n, k) )}
{a(n) = local(A=1); A = exp( sum(k=1,n+1, A168595(k)/2 * x^k/k) +x*O(x^n)); polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
Showing 1-4 of 4 results.
Comments