cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A168067 a(n) = n*(n^7+1)/2.

Original entry on oeis.org

0, 1, 129, 3282, 32770, 195315, 839811, 2882404, 8388612, 21523365, 50000005, 107179446, 214990854, 407865367, 737894535, 1281445320, 2147483656, 3487878729, 5509980297, 8491781530, 12800000010, 18911429691, 27437936779, 39155492652, 55037657100, 76293945325
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168635.

Programs

  • Magma
    [n*(n^7+1)/2: n in [0..40]]; // Vincenzo Librandi, Dec 10 2014
  • Mathematica
    Table[n (n^7 + 1)/2, {n, 0, 40}] (* or *) CoefficientList[Series[x (1 + 120 x + 2157 x^2 + 7792 x^3 + 7827 x^4 + 2136 x^5 + 127 x^6) / (1 - x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2014 *)

Formula

G.f.: x*(1 + 120*x + 2157*x^2 + 7792*x^3 + 7827*x^4 + 2136*x^5 + 127*x^6)/(1-x)^9. - Vincenzo Librandi, Dec 10 2014

Extensions

More terms from Vincenzo Librandi, Dec 10 2014

A158497 Triangle T(n,k) formed by the coordination sequences and the number of leaves for trees.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 12, 1, 4, 12, 36, 108, 1, 5, 20, 80, 320, 1280, 1, 6, 30, 150, 750, 3750, 18750, 1, 7, 42, 252, 1512, 9072, 54432, 326592, 1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344, 1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1, 10, 90, 810, 7290, 65610, 590490, 5314410, 47829690, 430467210, 3874204890
Offset: 0

Views

Author

Thomas Wieder, Mar 20 2009

Keywords

Comments

Consider the k-fold Cartesian products CP(n,k) of the vector A(n) = [1, 2, 3, ..., n].
An element of CP(n,k) is a n-tuple T_t of the form T_t = [i_1, i_2, i_3, ..., i_k] with t=1, .., n^k.
We count members T of CP(n,k) which satisfy some condition delta(T_t), so delta(.) is an indicator function which attains values of 1 or 0 depending on whether T_t is to be counted or not; the summation sum_{CP(n,k)} delta(T_t) over all elements T_t of CP produces the count.
For the triangle here we have delta(T_t) = 0 if for any two i_j, i_(j+1) in T_t one has i_j = i_(j+1): T(n,k) = Sum_{CP(n,k)} delta(T_t) = Sum_{CP(n,k)} delta(i_j = i_(j+1)).
The test on i_j > i_(j+1) generates A158498. One gets the Pascal triangle A007318 if the indicator function tests whether for any two i_j, i_(j+1) in T_t one has i_j >= i_(j+1).
Use of other indicator functions can also calculate the Bell numbers A000110, A000045 or A000108.

Examples

			Array, A(n, k) = n*(n-1)^(k-1) for n > 1, A(n, k) = 1 otherwise, begins as:
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  1,   1,    1,     1,      1,       1,        1,        1, ... A000012;
  1,  2,   2,    2,     2,      2,       2,        2,        2, ... A040000;
  1,  3,   6,   12,    24,     48,      96,      192,      384, ... A003945;
  1,  4,  12,   36,   108,    324,     972,     2916,     8748, ... A003946;
  1,  5,  20,   80,   320,   1280,    5120,    20480,    81920, ... A003947;
  1,  6,  30,  150,   750,   3750,   18750,    93750,   468750, ... A003948;
  1,  7,  42,  252,  1512,   9072,   54432,   326592,  1959552, ... A003949;
  1,  8,  56,  392,  2744,  19208,  134456,   941192,  6588344, ... A003950;
  1,  9,  72,  576,  4608,  36864,  294912,  2359296, 18874368, ... A003951;
  1, 10,  90,  810,  7290,  65610,  590490,  5314410, 47829690, ... A003952;
  1, 11, 110, 1100, 11000, 110000, 1100000, 11000000, ............. A003953;
  1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, ............. A003954;
  1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, ............. A170732;
  ... ;
The triangle begins as:
  1
  1, 1;
  1, 2,  2;
  1, 3,  6,  12;
  1, 4, 12,  36,  108;
  1, 5, 20,  80,  320,  1280;
  1, 6, 30, 150,  750,  3750,  18750;
  1, 7, 42, 252, 1512,  9072,  54432, 326592;
  1, 8, 56, 392, 2744, 19208, 134456, 941192, 6588344;
  ...;
T(3,3) = 12 counts the triples (1,2,1), (1,2,3), (1,3,1), (1,3,2), (2,1,2), (2,1,3), (2,3,1), (2,3,2), (3,1,2), (3,1,3), (3,2,1), (3,2,3) out of a total of 3^3 = 27 triples in the CP(3,3).
		

Crossrefs

Array rows n: A170733 (n=14), ..., A170769 (n=50).
Columns k: A000012(n) (k=0), A000027(n) (k=1), A002378(n-1) (k=2), A011379(n-1) (k=3), A179824(n) (k=4), A101362(n-1) (k=5), 2*A168351(n-1) (k=6), 2*A168526(n-1) (k=7), 2*A168635(n-1) (k=8), 2*A168675(n-1) (k=9), 2*A170783(n-1) (k=10), 2*A170793(n-1) (k=11).
Diagonals k: A055897 (k=n), A055541 (k=n-1), A373395 (k=n-2), A379612 (k=n-3).
Sums: (-1)^n*A065440(n) (signed row).

Programs

  • Magma
    A158497:= func< n,k | k le 1 select n^k else n*(n-1)^(k-1) >;
    [A158497(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2025
    
  • Mathematica
    A158497[n_, k_]:= If[n<2 || k==0, 1, n*(n-1)^(k-1)];
    Table[A158497[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 18 2025 *)
  • SageMath
    def A158497(n,k): return n^k if k<2 else n*(n-1)^(k-1)
    print(flatten([[A158497(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Mar 18 2025

Formula

T(n, k) = (n-1)^(k-1) + (n-1)^k = n*A079901(n-1,k-1), k > 0.
Sum_{k=0..n} T(n,k) = (n*(n-1)^n - 2)/(n-2), n > 2.

Extensions

Edited by R. J. Mathar, Mar 31 2009
More terms added by G. C. Greubel, Mar 18 2025

A168636 a(n) = n^7*(n^2 + 1)/2.

Original entry on oeis.org

0, 1, 320, 10935, 139264, 1015625, 5178816, 20588575, 68157440, 196101729, 505000000, 1188717431, 2597806080, 5333623945, 10383230144, 19307109375, 34493956096, 59499107585, 99485755200, 161790784759, 256640000000, 398040567561, 604881787840, 902278743455
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168635.

Programs

  • Magma
    [n^7*(n^2+1)/2: n in [0..25]]; // Vincenzo Librandi, Jul 29 2016
    
  • Mathematica
    Table[n^7 (n^2+1)/2,{n,0,20}] (* or *) LinearRecurrence[{10,-45,120,-210, 252, -210, 120, -45,10,-1}, {0,1, 320, 10935, 139264, 1015625, 5178816, 20588575, 68157440, 196101729}, 21] (* Harvey P. Dale, Mar 09 2016 *)
  • PARI
    a(n)=n^7*(n^2+1)/2 \\ Charles R Greathouse IV, Jul 29 2016
    
  • SageMath
    def A168636(n): return n^5*binomial(n^2+1,2)
    print([A168636(n) for n in range(31)]) # G. C. Greubel, Mar 23 2025

Formula

From Harvey P. Dale, Mar 09 2016: (Start)
a(0)=0, a(1)=1, a(2)=320, a(3)=10935, a(4)=139264, a(5)=1015625, a(6)=5178816, a(7)=20588575, a(8)=68157440, a(9)=196101729, a(n)= 10*a(n-1)- 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10).
G.f.: x*(1 + 310*x + 7780*x^2 + 44194*x^3 + 76870*x^4 + 44194*x^5 + 7780*x^6 + 310*x^7 + x^8)/(1 - x)^10. (End)
E.g.f.: (1/2)*x*(2 + 318*x + 3326*x^2 + 8120*x^3 + 7091*x^4 + 2667*x^5 + 463*x^6 + 36*x^7 + x^8)*exp(x). - G. C. Greubel, Jul 28 2016

A168660 a(n) = n^7*(n^3 + 1)/2.

Original entry on oeis.org

0, 1, 576, 30618, 532480, 4921875, 30373056, 141649396, 537919488, 1745783685, 5005000000, 12978455886, 30976598016, 68960620183, 144680034240, 288410625000, 549890031616, 1008202119561, 1785539723328, 3065980064770
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168635.

Programs

Formula

From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 565*x + 24337*x^2 + 227197*x^3 + 653875*x^4 + 656479*x^5 + 227995*x^6 + 23503*x^7 + 448*x^8)/(1 - x)^11.
E.g.f.: (1/2)*x*(2 + 574*x + 9631*x^2 + 34455*x^3 + 42665*x^4 + 22848*x^5 + 5881*x^6 + 750*x^7 + 45*x^8 + x^9)*exp(x). (End)

A168661 a(n) = n^7*(n^4 + 1)/2.

Original entry on oeis.org

0, 1, 1088, 89667, 2105344, 24453125, 181538496, 989075143, 4296015872, 15692921289, 50005000000, 142665578891, 371522101248, 896111571277, 2024835291584, 4324963359375, 8796227239936, 17136153323153, 32134511149632, 58245576384979, 102400640000000, 175139650815381, 292160397884608
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168635.

Programs

Formula

From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 1076*x + 76677*x^2 + 1100928*x^3 + 4868154*x^4 + 7864728*x^5 + 4868154*x^6 + 1100928*x^7 + 76677*x^8 + 1076*x^9 + x^10)/(1 - x)^12.
E.g.f.: (1/2)*x*(2 + 1086*x + 28802*x^2 + 146100*x^3 + 246870*x^4 + 179508*x^5 + 63988*x^6 + 11880*x^7 + 1155*x^8 + 55*x^9 + x^10)*exp(x). (End)

A168662 a(n) = n^7*(n^5 + 1)/2.

Original entry on oeis.org

0, 1, 2112, 266814, 8396800, 122109375, 1088531136, 6921055372, 34360786944, 141217159725, 500005000000, 1569223931946, 4458068140032, 11649073935499, 28347008894400, 64873254375000, 140737622573056, 291311323784217, 578415996823104, 1106657906468950, 2048000640000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 2009

Keywords

Crossrefs

Cf. A168635.

Programs

Formula

From G. C. Greubel, Jul 28 2016: (Start)
G.f.: x*(1 + 2099*x + 239436*x^2 + 5092668*x^3 + 33159150*x^4 + 81259650*x^5 + 81252636*x^6 + 33159324*x^7 + 5095017*x^8 + 238835*x^9 + 1984*x^10)/(1-x)^13.
E.g.f.: (1/2)*x*(2 + 2110*x + 86827*x^2 + 611851*x^3 + 1379540*x^4 + 1323673*x^5 + 627397*x^6 + 159027*x^7 + 22275*x^8 + 1705*x^9 + 66*x^10 + x^11)*exp(x). (End)
Showing 1-6 of 6 results.