cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A169452 Number of reduced words of length n in Coxeter group on 7 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 7, 42, 252, 1512, 9072, 54432, 326592, 1959552, 11757312, 70543872, 423263232, 2539579392, 15237476352, 91424858112, 548549148672, 3291294892032, 19747769352192, 118486616113152, 710919696678912, 4265518180073472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003949, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+x)*(1-x^3)/(1-14*x+104*x^3-91*x^4) )); // G. C. Greubel, May 01 2019
    
  • Maple
    gf:= (t+1) *(t^2+t+1) *(t^10+t^9+t^8+t^7+t^6+t^5+t^4+t^3+t^2+t+1) *(t^20-t^19+t^17-t^16 +t^14-t^13+t^11-t^10+t^9-t^7+t^6-t^4+t^3- t+1) / (15*t^33-5*t^32-5*t^31-5*t^30-5*t^29 -5*t^28-5*t^27 -5*t^26-5*t^25 -5*t^24 -5*t^23-5*t^22-5*t^21-5*t^20 -5*t^19-5*t^18-5*t^17 -5*t^16 -5*t^15 -5*t^14-5*t^13-5*t^12-5*t^11-5*t^10-5*t^9-5*t^8-5*t^7 -5*t^6 -5*t^5-5*t^4 -5*t^3-5*t^2-5*t+1):
    S:= series(gf,t,101):
    seq(coeff(S,t,j),j=0..100); # Robert Israel, Aug 26 2014
  • Mathematica
    coxG[{pwr_,c1_,c2_,trms_:20}]:=Module[{num=Total[2t^Range[pwr-1]]+t^pwr+ 1, den =Total[c2*t^Range[pwr-1]]+c1*t^pwr+1},CoefficientList[ Series[ num/den,{t,0,trms}],t]]; coxG[{33,15,-5,30}]
    (* "pwr" is the largest exponent in the g.f.;
    "c1" is the first coefficient in the denominator of the g.f.;
    "c2" is the second coefficient in the denominator of the g.f.;
    "trms" is the number of terms desired (with a default number of 20) *)
    (* Harvey P. Dale, Aug 16 2014 *)
    CoefficientList[Series[(1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34), {x,0,25}], x] (* G. C. Greubel, May 01 2019 *)
  • PARI
    my(x='x+O('x^25)); Vec((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)) \\ G. C. Greubel, May 01 2019
    
  • Sage
    ((1+x)*(1-x^33)/(1-6*x+20*x^33-15*x^34)).series(x, 25).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019

Formula

G.f.: (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(15*t^33 - 5*t^32 - 5*t^31 - 5*t^30 - 5*t^29 - 5*t^28 - 5*t^27 - 5*t^26 - 5*t^25 - 5*t^24 - 5*t^23 - 5*t^22 - 5*t^21 - 5*t^20 - 5*t^19 - 5*t^18 - 5*t^17 - 5*t^16 - 5*t^15 - 5*t^14 - 5*t^13 - 5*t^12 - 5*t^11 - 5*t^10 - 5*t^9 - 5*t^8 - 5*t^7 - 5*t^6 - 5*t^5 - 5*t^4 - 5*t^3 - 5*t^2 - 5*t + 1).
G.f.: (1+x)*(1-x^33)/(1 - 6*x + 20*x^33 - 15*x^34). - G. C. Greubel, May 01 2019
a(n) = -15*a(n-33) + 5*Sum_{k=1..32} a(n-k). - Wesley Ivan Hurt, May 06 2021