cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1232 results. Next

A163876 Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 93, 180, 351, 684, 1332, 2592, 5046, 9825, 19128, 37239, 72498, 141144, 274788, 534972, 1041513, 2027676, 3947595, 7685400, 14962368, 29129580, 56711106, 110408373, 214949232, 418475259, 814711182, 1586125572, 3087958512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

Also, coordination sequence for (6,6,6) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    coxG[{6,1,-1,40}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 22 2015 *)
    CoefficientList[Series[(1+x)*(1-x^6)/(1-2*x+2*x^6-x^7), {x,0,40}], x] (* G. C. Greubel, Aug 06 2017, modified Apr 25 2019 *)
  • PARI
    x='x+O('x^40); Vec((x^6+2*x^5+2*x^4+2*x^3+2*x^2+2*x+1)/(x^6-x^5- x^4-x^3-x^2-x+1)) \\ G. C. Greubel, Aug 06 2017
    
  • Sage
    ((1+x)*(1-x^6)/(1-2*x+2*x^6-x^7)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (x^6 + 2*x^5 + 2*x^4 + 2*x^3 + 2*x^2 + 2*x + 1)/(x^6 - x^5 - x^4 - x^3 - x^2 - x + 1).
G.f.: (1+x)*(1-x^6)/(1-2*x+2*x^6-x^7). - G. C. Greubel, Apr 25 2019
a(n) = -a(n-6) + Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 07 2021

A167931 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 20, 380, 7220, 137180, 2606420, 49521980, 940917620, 17877434780, 339671260820, 6453753955580, 122621325156020, 2329805177964380, 44266298381323220, 841059669245141180, 15980133715657682420
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170739, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17) ));  // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 25 2019 *)
    coxG[{16, 171, -18, 20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^16)/(1-19*x+189*x^16-171*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 171*t^16 - 18*t^15 - 18*t^14 - 18*t^13 - 18*t^12 - 18*t^11 - 18*t^10 - 18*t^9 - 18*t^8 - 18*t^7 - 18*t^6 - 18*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1).
G.f.: (1+x)*(1-x^16)/(1 -19*x +189*x^16 -171*x^17). - G. C. Greubel, Apr 25 2019

A167933 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 21, 420, 8400, 168000, 3360000, 67200000, 1344000000, 26880000000, 537600000000, 10752000000000, 215040000000000, 4300800000000000, 86016000000000000, 1720320000000000000, 34406400000000000000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170740, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 25 2019 *)
    coxG[{16, 190, -19, 20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 190*t^16 - 19*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1).
G.f.: (1+x)*(1-x^16)/(1 -20*x +209*x^16 -190*x^17). - G. C. Greubel, Apr 25 2019

A167881 Number of reduced words of length n in Coxeter group on 3 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98301, 196596, 393183, 786348, 1572660, 3145248, 6290352, 12580416, 25160256, 50319360, 100636416, 201268224, 402527232, 805036032, 1610035200, 3219996672
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003945, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-2*x+2*x^16-x^17) )); // G. C. Greubel, Dec 06 2024
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-2*x+2*x^16-x^17), {x,0,50}], x] (* G. C. Greubel, Jun 29 2016; Dec 06 2024 *)
    coxG[{16,1,-1}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
  • SageMath
    def A167881_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-2*x+2*x^16-x^17) ).list()
    print(A167881_list(40)) # G. C. Greubel, Dec 06 2024

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(t^16 - t^15 - t^14 - t^13 - t^12 - t^11 - t^10 - t^9 - t^8 - t^7 - t^6 - t^5 - t^4 - t^3 - t^2 - t + 1).
From G. C. Greubel, Dec 06 2024: (Start)
a(n) = Sum_{j=1..15} a(n-j) - a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 2*x + 2*x^16 - x^17). (End)

A167929 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097344, 395636332447752192, 7121453984059539456
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-18*x+170*x^16-153*x^17) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-18*x+170*x^16-153*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 26 2019 *)
    coxG[{16, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-18*x+170*x^16-153*x^17)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^16)/(1-18*x+170*x^16-153*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 153*t^16 - 17*t^15 - 17*t^14 - 17*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
G.f.: (1+x)*(1-x^16)/(1 - 18*x + 170*x^16 - 153*x^17). - G. C. Greubel, Apr 26 2019
a(n) = -153*a(n-16) + 17*Sum_{k=1..15} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167935 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928862, 161828205250506102, 3398392310260628142, 71366238515473190982
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-21*x+230*x^16-210*x^17) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^16)/(1-21*x+230*x^16-210*x^17), {x, 0, 20}], x] (* G. C. Greubel, Jul 01 2016, modified Apr 26 2019 *)
    coxG[{16, 210, -20}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-21*x+230*x^16-210*x^17)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^16)/(1-21*x+230*x^16-210*x^17)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^16 - 20*t^15 - 20*t^14 - 20*t^13 - 20*t^12 - 20*t^11 - 20*t^10 - 20*t^9 - 20*t^8 - 20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 - 20*t + 1).
G.f.: (1+x)*(1-x^16)/(1 - 21*x + 230*x^16 - 210*x^17). - G. C. Greubel, Apr 26 2019
a(n) = -210*a(n-16) + 20*Sum_{k=1..15} a(n-k). - Wesley Ivan Hurt, May 06 2021

A166608 Number of reduced words of length n in Coxeter group on 22 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 22, 462, 9702, 203742, 4278582, 89850222, 1886854662, 39623947902, 832102905942, 17474161024782, 366957381520422, 7706105011928631, 161828205250496400, 3398392310260322760, 71366238515464643520
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170741, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
    coxG[{12,210,-20}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 20 2018 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(210*t^12 - 20*t^11 - 20*t^10 - 20*t^9 -20*t^8 -20*t^7 - 20*t^6 - 20*t^5 - 20*t^4 - 20*t^3 - 20*t^2 -20*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -21*x +230*x^12 -210*x^13). - G. C. Greubel, Apr 25 2019

A166610 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460291, 295665060514120836, 6504631331310536193, 143101889288829107868
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13) )); // G. C. Greubel, Apr 25 2019
    
  • Mathematica
    coxG[{12,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 03 2015 *)
    CoefficientList[Series[(1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)) \\ G. C. Greubel, Apr 25 2019
    
  • Sage
    ((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019

Formula

G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^12 - 21*t^11 - 21*t^10 - 21*t^9 -21*t^8 -21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 -21*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -22*x + 252*x^12 - 231*x^13). - G. C. Greubel, Apr 25 2019

A167882 Number of reduced words of length n in Coxeter group on 4 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 4, 12, 36, 108, 324, 972, 2916, 8748, 26244, 78732, 236196, 708588, 2125764, 6377292, 19131876, 57395622, 172186848, 516560496, 1549681344, 4649043600, 13947129504, 41841384624, 125524142208, 376572391632, 1129717069920
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003946, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) )); // G. C. Greubel, Dec 06 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-3*t+5*t^16-3*t^17), {t,0,50}], t] (* G. C. Greubel, Jun 29 2016; Dec 06 2024 *)
    coxG[{16,3,-2}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
  • SageMath
    def A167882_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-3*x+5*x^16-3*x^17) ).list()
    print(A167882_list(40)) # G. C. Greubel, Dec 06 2024

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1) / ( 3*t^16 - 2*t^15 - 2*t^14 - 2*t^13 - 2*t^12 - 2*t^11 - 2*t^10 - 2*t^9 - 2*t^8 - 2*t^7 - 2*t^6 - 2*t^5 - 2*t^4 - 2*t^3 - 2*t^2 - 2*t + 1).
From G. C. Greubel, Jan 17 2023: (Start)
a(n) = 2*Sum_{j=1..15} a(n-j) - 3*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 3*x + 5*x^16 - 3*x^17). (End)

A167896 Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709110, 21474836400, 85899345450, 343597381200, 1374389522400, 5497558080000, 21990232281600, 87960928972800
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003947, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-4*x+9*x^16-6*x^17) )); // G. C. Greubel, Dec 06 2024
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-4*t+9*t^16-6*t^17), {t,0,50}], t] (* G. C. Greubel, Jul 01 2016; Dec 06 2024 *)
    coxG[{16,6,-3,40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
  • SageMath
    def A167896_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-4*x+9*x^16-6*x^17) ).list()
    print(A167896_list(40)) # G. C. Greubel, Dec 06 2024

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ ( 6*t^16 - 3*t^15 - 3*t^14 - 3*t^13 - 3*t^12 - 3*t^11 - 3*t^10 - 3*t^9 - 3*t^8 - 3*t^7 - 3*t^6 - 3*t^5 - 3*t^4 - 3*t^3 - 3*t^2 - 3*t + 1).
From G. C. Greubel, Dec 06 2024: (Start)
a(n) = 3*Sum_{j=1..15} a(n-j) - 6*a(n-16).
G.f.: (1+x)*(1-x^16)/(1 - 4*x + 9*x^16 - 6*x^17). (End)
Showing 1-10 of 1232 results. Next