cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A167919 Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135232, 200291280469622706
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170732, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-12*x+77*x^16-66*x^17) )); // G. C. Greubel, Sep 13 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-12*t+77*t^16-66*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 13 2023 *)
    coxG[{16,66,-11}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 28 2018 *)
  • SageMath
    def A167919_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-12*x+77*x^16-66*x^17) ).list()
    A167919_list(40) # G. C. Greubel, Sep 13 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 66*t^16 - 11*t^15 - 11*t^14 - 11*t^13 - 11*t^12 - 11*t^11 - 11*t^10 - 11*t^9 - 11*t^8 - 11*t^7 - 11*t^6 - 11*t^5 - 11*t^4 - 11*t^3 - 11*t^2 - 11*t + 1).
From G. C. Greubel, Sep 13 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 12*t + 77*t^16 - 66*t^17).
a(n) = 11*Sum_{j=1..15} a(n-j) - 66*a(n-16). (End)

A167922 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270507
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) )); // G. C. Greubel, Sep 13 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-13*t+90*t^16-78*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 13 2023 *)
    coxG[{16, 78, -12, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 13 2023 *)
  • SageMath
    def A167922_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) ).list()
    A167922_list(40) # G. C. Greubel, Sep 13 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 78*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).
From G. C. Greubel, Sep 13 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 13*t + 90*t^16 - 78*t^17).
a(n) = 12*Sum_{j=1..15} a(n-j) - 78*a(n-16). (End)

A167926 Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398456
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170736, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) )); // G. C. Greubel, Sep 10 2023
    
  • Mathematica
    coxG[{16,120,-15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 27 2015 *)
    CoefficientList[Series[(1+t)*(1-t^16)/(1-16*t+135*t^16-120*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
  • SageMath
    def A167926_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) ).list()
    A167926_list(40) # G. C. Greubel, Sep 10 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 120*t^16 - 15*t^15 - 15*t^14 - 15*t^13 - 15*t^12 - 15*t^11 - 15*t^10 - 15*t^9 - 15*t^8 - 15*t^7 - 15*t^6 - 15*t^5 - 15*t^4 - 15*t^3 - 15*t^2 - 15*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 16*t + 135*t^16 - 120*t^17).
a(n) = 15*Sum_{j=1..15} a(n-j) - 120*a(n-16). (End)

A167927 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684121
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-17*x+152*x^16-136*x^17) )); // G. C. Greubel, Sep 10 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-17*t+152*t^16-136*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
    coxG[{16,136,-16}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 15 2022 *)
  • SageMath
    def A167927_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-17*x+152*x^16-136*x^17) ).list()
    A167927_list(40) # G. C. Greubel, Sep 10 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 136*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 17*t + 152*t^16 - 136*t^17).
a(n) = 16*Sum_{j=1..15} a(n-j) - 136*a(n-16). (End)

A167937 Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) )); // G. C. Greubel, Sep 10 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-22*t+252*t^16-231*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
    coxG[{16,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 27 2016 *)
  • SageMath
    def A167937_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) ).list()
    A167937_list(40) # G. C. Greubel, Sep 10 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 231*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 22*t + 252*t^16 - 231*t^17).
a(n) = 21*Sum_{j=1..15} a(n-j) - 231*a(n-16). (End)

A167930 Number of partitions of n in which some but not all parts are equal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

The parts may not all be equal, and at least one part must occur at least twice. - N. J. A. Sloane, May 30 2024

Examples

			The partitions of 6 are:
6 ....................... All parts are distinct.
5 + 1 ................... All parts are distinct.
4 + 2 ................... All parts are distinct.
4 + 1 + 1 ............... Only some parts are equal ...... (1).
3 + 3 ................... All parts are equal.
3 + 2 + 1 ............... All parts are distinct.
3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2).
2 + 2 + 2 ............... All parts are equal.
2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3).
2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal.
Then a(6) = 4.
a(7) = 9 from 511  4111  331  322  3211  31111  2221  22111  211111. - _N. J. A. Sloane_, May 30 2024
		

Crossrefs

Programs

  • Mathematica
    f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)

Formula

a(n) = A047967(n) - A032741(n).
a(n) = A000041(n) - A000009(n) - A032741(n).
a(0) = 0: For n>0, a(n) = A000041(n) - A000009(n) - A000005(n) + 1.

Extensions

Edited by Omar E. Pol, Nov 16 2009
More terms from Max Alekseyev, May 02 2011

A167932 Number of partitions of n such that all parts are equal or all parts are distinct.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

Note that for positive integers the number of partitions of n such that all parts are equal is equal to the number of proper divisors of n. (A032741(n)).

Examples

			The partitions of 6 are:
6 .............. All parts are distinct ..... (1).
5+1 ............ All parts are distinct ..... (2).
4+2 ............ All parts are distinct ..... (3).
4+1+1 .......... Only some parts are equal.
3+3 ............ All parts are equal ........ (4).
3+2+1 .......... All parts are distinct ..... (5).
3+1+1+1 ........ Only some parts are equal.
2+2+2 .......... All parts are equal ........ (6).
2+2+1+1 ........ Only some parts are equal.
2+1+1+1+1 ...... Only some parts are equal.
1+1+1+1+1+1 .... All parts are equal ........ (7).
So a(6) = 7.
		

Crossrefs

Programs

Formula

a(n) = A000041(n) - A167930(n).
a(n) = A000009(n) + A032741(n).

Extensions

More terms from D. S. McNeil, May 10 2010

A167941 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-25*x+324*x^16-300*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    coxG[{16,300,-24}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 01 2021 *)
    CoefficientList[Series[(1+t)*(1-t^16)/(1-25*t+324*t^16-300*t^17), {t, 0, 50}], t] (* G. C. Greubel, Sep 08 2023 *)
  • SageMath
    def A167941_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-25*x+324*x^16-300*x^17) ).list()
    A167941_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 300*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 25*t + 324*t^16 - 300*t^17).
a(n) = 24*Sum_{j=1..15} a(n-j) - 300*a(n-16). (End)
Showing 1-8 of 8 results.