cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A346426 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 5, 4, 3, 15, 15, 11, 7, 5, 52, 52, 36, 21, 12, 7, 203, 203, 135, 74, 38, 19, 11, 877, 877, 566, 296, 141, 64, 30, 15, 4140, 4140, 2610, 1315, 592, 250, 105, 45, 22, 21147, 21147, 13082, 6393, 2752, 1098, 426, 165, 67, 30, 115975, 115975, 70631, 33645, 13960, 5317, 1940, 696, 254, 97, 42
Offset: 0

Views

Author

Alois P. Heinz, Jul 16 2021

Keywords

Comments

Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1); A(3,1) = 7: 2*2*2*3, 2*3*4, 4*6, 2*2*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30.

Examples

			A(2,2) = 11: 00|1|2, 001|2, 1|002, 0|0|1|2, 0|01|2, 0|1|02, 01|02, 00|12, 0|0|12, 0|012, 0012.
Square array A(n,k) begins:
   1,  1,   2,    5,   15,    52,    203,     877,    4140, ...
   1,  2,   5,   15,   52,   203,    877,    4140,   21147, ...
   2,  4,  11,   36,  135,   566,   2610,   13082,   70631, ...
   3,  7,  21,   74,  296,  1315,   6393,   33645,  190085, ...
   5, 12,  38,  141,  592,  2752,  13960,   76464,  448603, ...
   7, 19,  64,  250, 1098,  5317,  28009,  158926,  963913, ...
  11, 30, 105,  426, 1940,  9722,  52902,  309546, 1933171, ...
  15, 45, 165,  696, 3281, 16972,  95129,  572402, 3670878, ...
  22, 67, 254, 1106, 5372, 28582, 164528, 1015356, 6670707, ...
  ...
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; expand(`if`(n=0, 1,
          x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
        end:
    S:= proc(n, k) option remember; coeff(s(n), x, k) end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
          combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
        end:
    A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    s[n_] := s[n] = Expand[If[n == 0, 1, x Sum[s[n - j] Binomial[n - 1, j - 1], {j, 1, n}]]];
    S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
    A[n_, k_] := Sum[S[k, j] b[n, j], {j, 0, k}];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz *)

Formula

A(n,k) = A001055(A000079(n)*A070826(k+1)).
A(n,k) = Sum_{j=0..k} A048993(k,j)*A292508(n,j+1).
A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000041(n-i).

A249620 Triangle read by rows: T(m,n) = number of partitions of the multiset with m elements and signature corresponding to n-th integer partition (A194602).

Original entry on oeis.org

1, 1, 2, 2, 5, 4, 3, 15, 11, 7, 9, 5, 52, 36, 21, 26, 12, 16, 7, 203, 135, 74, 92, 38, 52, 19, 66, 29, 31, 11, 877, 566, 296, 371, 141, 198, 64, 249, 98, 109, 30, 137, 47, 57, 15, 4140, 2610, 1315, 1663, 592, 850, 250, 1075, 392, 444, 105, 560
Offset: 0

Views

Author

Tilman Piesk, Nov 04 2014

Keywords

Comments

This triangle shows the same numbers in each row as A129306 and A096443, but in this arrangement the multisets in column n correspond to the n-th integer partition in the infinite order defined by A194602.
Row lengths: A000041 (partition numbers), Row sums: A035310
Columns: 0: A000110 (Bell), 1: A035098 (near-Bell), 2: A169587, 4: A169588
Last in row: end-1: A091437, end: A000041 (partition numbers)
The rightmost columns form a reflected version of the triangle A126442:
n 0 1 2 4 6 10 14 21 (A000041(1,2,3...)-1)
m
1 1
2 2 2
3 5 4 3
4 15 11 7 5
5 52 36 21 12 7
6 203 135 74 38 19 11
7 877 566 296 141 64 30 15
8 4140 2610 1315 592 250 105 45 22
A249619 shows the number of permutations of the same multisets.

Examples

			See "The T(5,2)=21 partitions of {1,1,1,2,3}" link. Similar links for m=1..8 are in "Partitions of multisets" (Wikiversity).
Triangle begins:
  n     0    1   2   3   4   5   6   7   8   9  10
m
0       1
1       1
2       2    2
3       5    4   3
4      15   11   7   9   5
5      52   36  21  26  12  16   7
6     203  135  74  92  38  52  19  66  29  31  11
		

Crossrefs

A169587 The total number of ways of partitioning the multiset {1,1,1,2,3,...,n-2}.

Original entry on oeis.org

3, 7, 21, 74, 296, 1315, 6393, 33645, 190085, 1145246, 7318338, 49376293, 350384315, 2606467211, 20266981269, 164306340566, 1385709542808, 12133083103491, 110095025916745, 1033601910417425, 10024991744613469, 100316367530768074, 1034373400144455266
Offset: 3

Views

Author

Martin Griffiths, Dec 02 2009

Keywords

Examples

			The partitions of {1,1,1,2} are {{1},{1},{1},{2}}, {{1,1},{1},{2}}, {{1,2},{1},{1}}, {{1,1},{1,2}}, {{1,1,1},{2}}, {{1,1,2},{1}} and {{1,1,1,2}}, so a(4)=7.
		

Crossrefs

This is related to A000110, A035098 and A169588.
Row n=3 of A346426.
Cf. A346813.

Programs

  • Mathematica
    Table[(BellB[n] + 3 BellB[n - 1] + 5 BellB[n - 2] + 2 BellB[n - 3])/ 6, {n, 3, 23}]

Formula

For n>=3, a(n)=(Bell(n)+3Bell(n-1)+5Bell(n-2)+2Bell(n-3))/6, where Bell(n) is the n-th Bell number (the Bell numbers are given in A000110).
E.g.f.: (e^(3x)+6e^(2x)+9e^x+2)(e^(e^x-1))/6.

A346814 Number of partitions of the (n+4)-multiset {0,0,0,0,1,2,...,n} into distinct multisets.

Original entry on oeis.org

2, 7, 25, 100, 442, 2134, 11147, 62505, 373832, 2372061, 15896786, 112087787, 828764232, 6407210143, 51661121427, 433442672918, 3776529680114, 34108004916520, 318791092171365, 3078872979139965, 30684482469719642, 315168093997478339, 3332424923926530990
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2021

Keywords

Comments

Also number of factorizations of 16 * Product_{i=1..n} prime(i+1) into distinct factors.

Crossrefs

Row n=4 of A346520.
Cf. A169588.
Showing 1-4 of 4 results.