A169609 Period 3: repeat [1, 3, 3].
1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3, 1, 3, 3
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,1).
Crossrefs
Programs
-
Magma
[ n mod 3 eq 0 select 1 else 3: n in [0..104] ];
-
Magma
&cat [[1, 3, 3]^^30]; // Wesley Ivan Hurt, Jul 02 2016
-
Maple
seq(op([1, 3, 3]), n=0..50); # Wesley Ivan Hurt, Jul 02 2016
-
Mathematica
PadRight[{},120,{1,3,3}] (* or *) LinearRecurrence[{0,0,1},{1,3,3},120] (* Harvey P. Dale, Apr 29 2015 *)
Formula
a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 3, a(2) = 3.
G.f.: (1+3*x+3*x^2)/(1-x^3).
a(n) = (7/3)+(2/3)*cos((2*Pi/3)*(n+1))-(2*sqrt(3)/3)*sin((2*Pi/3)*(n+1)). [Richard Choulet, Mar 15 2010]
a(n) = a(n-a(n-2)) for n>=2. Example: a(5) = a(5-a(3)) = a(5-a(3-a(1))) = a(5-a(3-3)) = a(5-a(0)) = a(5-1) = a(4) = a(4-a(2)) = a(4-3) = a(1) = 3. [Richard Choulet, Mar 15 2010; edited by Klaus Brockhaus, Nov 21 2010]
a(n) = 1 + 2*sgn(n mod 3). - Wesley Ivan Hurt, Jul 02 2016
a(n) = 3/gcd(n,3). - Wesley Ivan Hurt, Jul 11 2016
Extensions
Keywords cofr, cons added by Klaus Brockhaus, Apr 20 2010
Minor edits, crossref added by Klaus Brockhaus, May 03 2010
Comments