A170802 a(n) = n^10*(n^10 + 1)/2.
0, 1, 524800, 1743421725, 549756338176, 47683720703125, 1828079250264576, 39896133290043625, 576460752840294400, 6078832731271856601, 50000000005000000000, 336374997479248716901, 1916879996254696243200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
Crossrefs
Programs
-
GAP
List([0..30], n -> n^10*(n^10+1)/2); # G. C. Greubel, Nov 15 2018
-
Magma
[n^10*(n^10+1)/2: n in [0..20]]; // Vincenzo Librandi, Aug 27 2011
-
Maple
seq(n^10*(n^10 +1)/2, n=0..20); # G. C. Greubel, Oct 11 2019
-
Mathematica
n10[n_]:=Module[{c=n^10},(c(c+1))/2];Array[n10,15,0] (* Harvey P. Dale, Jul 17 2012 *)
-
PARI
vector(30, n, n--; n^10*(n^10+1)/2) \\ G. C. Greubel, Nov 15 2018
-
Python
for n in range(0,20): print(int(n**10*(n**10 + 1)/2), end=', ') # Stefano Spezia, Nov 15 2018
-
Sage
[n^10*(n^10+1)/2 for n in range(30)] # G. C. Greubel, Nov 15 2018
Formula
From Robert A. Russell, Nov 13 2018: (Start)
G.f.: (Sum_{j=1..20} S2(20,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
G.f.: x*Sum_{k=0..19} A145882(20,k) * x^k / (1-x)^21.
E.g.f.: (Sum_{k=1..20} S2(20,k)*x^k + Sum_{k=1..10} S2(10,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
For n>20, a(n) = Sum_{j=1..21} -binomial(j-22,j) * a(n-j). (End)
Comments