cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A253213 a(n) = 10^n + 9.

Original entry on oeis.org

10, 19, 109, 1009, 10009, 100009, 1000009, 10000009, 100000009, 1000000009, 10000000009, 100000000009, 1000000000009, 10000000000009, 100000000000009, 1000000000000009, 10000000000000009, 100000000000000009, 1000000000000000009, 10000000000000000009, 100000000000000000009
Offset: 0

Views

Author

Vincenzo Librandi, Dec 30 2014

Keywords

Crossrefs

Cf. similar sequences listed in A253208.
Cf. A170955.

Programs

  • Magma
    [10^n+9: n in [0..30]];
  • Mathematica
    Table[10^n + 9, {n, 0, 40}]
    LinearRecurrence[{11,-10},{10,19},40] (* Harvey P. Dale, Jun 29 2018 *)

Formula

a(n) = 11*a(n-1) - 10*a(n-2) for n > 1.
G.f.: (10 - 91*x)/((1 - x)*(1 - 10*x)).
E.g.f.: exp(x)*(exp(9*x) + 9). - Elmo R. Oliveira, Sep 15 2024

Extensions

a(20) from Elmo R. Oliveira, Sep 15 2024
a(20) corrected by Sean A. Irvine, Sep 22 2024

A105259 Number of distinct prime divisors of 99..91 (with n 9's).

Original entry on oeis.org

0, 2, 1, 2, 1, 3, 1, 4, 2, 3, 3, 3, 3, 4, 3, 4, 3, 6, 2, 4, 4, 3, 3, 5, 4, 7, 4, 6, 2, 6, 3, 6, 1, 2, 3, 5, 3, 10, 4, 7, 5, 4, 6, 7, 1, 7, 2, 6, 3, 5, 5, 6, 4, 6, 2, 8, 4, 7, 3, 5, 4, 11, 2, 7, 5, 8, 6, 5, 5, 7, 2, 8, 4, 7, 5, 6, 4, 6, 5, 9, 3, 9, 4, 7, 2, 9, 4
Offset: 0

Views

Author

Parthasarathy Nambi, Apr 14 2005

Keywords

Examples

			If n=1, then the number of distinct prime divisors of 91 is 2.
If n=2, then the number of distinct prime divisors of 991 is 1 (a prime).
If n=3, then the number of distinct prime divisors of 9991 is 2.
		

Crossrefs

Programs

  • Maple
    A105259 := proc(n) local x ;x := [1,seq(9,k=1..n)] ; add(op(i,x)*10^(i-1),i=1..nops(x)) ; numtheory[factorset](%) ; nops(%) ; end proc: # R. J. Mathar, Aug 24 2011
  • Mathematica
    Table[PrimeNu[10^(n + 1) - 9], {n, 0, 50}] (* G. C. Greubel, May 10 2017 *)

Formula

a(n) = A001221(A170955(n+1)). - R. J. Mathar, Aug 24 2011

Extensions

More terms from Amiram Eldar, Jan 24 2020

A193871 Square array T(n,k) = k^n - k + 1 read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 25, 13, 1, 1, 31, 79, 61, 21, 1, 1, 63, 241, 253, 121, 31, 1, 1, 127, 727, 1021, 621, 211, 43, 1, 1, 255, 2185, 4093, 3121, 1291, 337, 57, 1, 1, 511, 6559, 16381, 15621, 7771, 2395, 505, 73, 1, 1, 1023, 19681, 65533, 78121, 46651, 16801, 4089, 721, 91, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 21 2011

Keywords

Comments

The columns give 1^n-0, 2^n-1, 3^n-2, 4^n-3, 5^n-4, etc.
The main diagonal gives A006091, which is a sequence related to the famous "coconuts" problem.

Examples

			Array begins:
  1,   1,    1,     1,     1,    1,    1,   1,   1,   1
  1,   3,    7,    13,    21,   31,   43,  57,  73
  1,   7,   25,    61,   121,  211,  337, 505
  1,  15,   79,   253,   621, 1291, 2395
  1,  31,  241,  1021,  3121, 7771
  1,  63,  727,  4093, 15621
  1, 127, 2185, 16381
  1, 255, 6559
  1, 511
  1
		

Crossrefs

Row 1: A000012. Rows 2,3: A002061, A061600 but both without repetitions.
Cf. A276135.

Programs

  • Mathematica
    Table[k^# - k + 1 &[n - k + 1], {n, 11}, {k, n}] // Flatten (* Michael De Vlieger, Nov 16 2016 *)

A177114 4*(10^n-9).

Original entry on oeis.org

4, 364, 3964, 39964, 399964, 3999964, 39999964, 399999964, 3999999964, 39999999964, 399999999964, 3999999999964, 39999999999964, 399999999999964, 3999999999999964, 39999999999999964, 399999999999999964
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    LinearRecurrence[{11, -10}, {4, 364}, 30] (* or *) Join[{4},Table[ 100*FromDigits[PadRight[{3},n,9]]+64,{n,30}]] (* Harvey P. Dale, Jul 31 2017 *)

Formula

G.f. 4*x*(1+80*x) / ( (10*x-1)*(x-1) ). - R. J. Mathar, Aug 24 2011
a(n) = 4*A170955(n). - R. J. Mathar, Aug 24 2011

A254648 Numbers n whose square representation in base 10 can be split into three parts whose sum is n.

Original entry on oeis.org

36, 82, 91, 235, 379, 414, 675, 756, 792, 909, 918, 964, 991, 1296, 1702, 1782, 3366, 3646, 3682, 4132, 4906, 5149, 6832, 7543, 8416, 8767, 8856, 9208, 9325, 9586, 9621, 9765, 9901, 9945, 9955, 9991, 12222, 12727, 17271, 22231
Offset: 1

Views

Author

Michel Lagneau, Feb 04 2015

Keywords

Comments

Extension of the Kaprekar numbers (A006886) where the number of parts of n^2 is two. It is probably possible to generalize this property with the division of n^2 into m parts.
By convention, the second and third parts may start with the digit 0, but must be positive. For example, 991 is in the sequence because 991^2 = 982081, which can be split into 982, 08 and 1, and 982 + 08 + 1 = 991. But 100 is not; although 100^2 = 10000 and 100 + 0 + 0 = 100, the second and the third part here are not positive. The number 99 is not in the sequence although 99^2 = 9801 and 98 + 0 + 1 = 99.
Property of the sequence:
The sequence is infinite because the numbers of the form 10^n-9 = 91, 991, 991, ... (A170955) are in the sequence: if m = 99...91 with k digits "9", then m^2 = 99...98200...081 with k-1 digits "9" and k-1 digits "0", and 99...982 + 00...8 + 1 = 99...91 = m.
The prime of the sequence are {379, 9901, ...} union {A093177}.
Calculation method: For each class of squares having k-digit numbers, the number of partitions into 3 parts is n(n+1)/2 (A000217). For instance, if the numbers are of the form (abcde) with k = 5, the 6 partitions into 3 subsets are {a,b,{c,d,e}}, {a,{b,c},{d,e}}, {a,{b,c,d},e}, {{a,b},c,{d,e}}, {{a,b},{c,d},e}, {{a,b,c},d,e} and then we compute the corresponding numbers.
Example: 235^2 = 55225 (abcde) = 55225 => {a,b,{c,d,e}} = {5,5,{2,2,5}} => {5,5,225} and 5+5+225 = 235.

Examples

			36^2 = 1296 and 1 + 29 + 6 = 36;
235^2 = 55225 and 5 + 5 + 225 = 235;
1782^2 = 3175524 and 3 + 1755 + 24 = 1782;
12727^2 = 161976529 and 1 + 6197 + 6529 = 12727.
		

Crossrefs

Programs

  • Python
    from itertools import combinations
    A254648_list, n, n2 = [], 10, 100
    while n < 10**4:
        m = str(n2)
        for a in combinations(range(1,len(m)),2):
            x, y, z = int(m[:a[0]]), int(m[a[0]:a[1]]), int(m[a[1]:])
            if y != 0 and z != 0 and x+y+z == n:
                A254648_list.append(n)
                break
        n += 1
        n2 += 2*n-1 # Chai Wah Wu, Aug 27 2017

Extensions

Removed terms 4879 and 5292 by Chai Wah Wu, Aug 27 2017
Showing 1-5 of 5 results.