cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A171182 Period 6: repeat [0, 1, 1, 1, 0, 2].

Original entry on oeis.org

0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 04 2009, Dec 07 2009

Keywords

Comments

The number of divisors d of n of the form d=2 or 3. - Vladimir Shevelev, May 21 2010
a(n) = s(n+6), where s(k) is the number of partitions of k into distinct parts such that max(p) = 2 + min(p) for k >= 1, and (s(0)..s(6)) = (0,0,0,0,1,0,2). - Clark Kimberling, Apr 15 2014
Number of r X s integer-sided rectangles such that r < s, r + s = 2n, r | s and (s - r)/2 | s. - Wesley Ivan Hurt, Apr 24 2020
Number of positive integer solutions, (r,s,t), of the equation r^2 + t*s^2 = (n + 6)^2, where r + s = n + 6 and t < r <= s. For example, when n=6 we have the two solutions (4,8,2) and (6,6,3) since 4^2 + 2*8^2 = 12^2 and 6^2 + 3*6^2 = 12^2. - Wesley Ivan Hurt, Oct 04 2020

Crossrefs

Cf. A178142. - Vladimir Shevelev, May 21 2010
Cf. A115357.
Number of distinct prime factors <= p: this sequence (p=3), A178146 (p=5), A210679 (p=7).

Programs

Formula

a(n) = A115357(n-2) for n>1. - R. J. Mathar, Dec 09 2009
a(2) = 1, a(3) = 1, a(5) = 0, otherwise a(n) = a(n-2) + a(n-3) - a(n-5), where we put a(n) = 0, if n<0. - Vladimir Shevelev, May 21 2010
a(n) = floor(((n+1) mod 6)/3) + 2*floor(((n+5) mod 6)/5). - Gary Detlefs, Feb 15 2014
From Wesley Ivan Hurt, Aug 27 2014: (Start)
G.f.: (2+2*x+x^2)/(1+x-x^3-x^4).
a(n) + a(n-1) = a(n-3) + a(n-4) for n>4.
a(n) = (1 + floor((n-3)^2/2)) mod 3. (End)
a(n) = (5 + 3*cos(n*Pi) + 4*cos(2*n*Pi/3))/6. - Wesley Ivan Hurt, Jun 19 2016
From Amiram Eldar, Sep 16 2023: (Start)
Additive with a(p^e) = 1 if p <= 3, and 0 otherwise.
a(n) = A059841(n) + A079978(n).
a(n) = A001221(A089128(n)).
a(n) = A001221(A065331(n)). (End)

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010