A199475
G.f. satisfies A(x) = Sum_{n>=0} x^n * (1 - A(x)^(2*n+2))/(1 - A(x)^2).
Original entry on oeis.org
1, 2, 7, 34, 195, 1225, 8146, 56336, 401005, 2918308, 21614216, 162385693, 1234515922, 9479336440, 73410868630, 572719097908, 4496923141241, 35509806367132, 281814387290431, 2246608404455588, 17982234787607464, 144458551104066553, 1164342291135424494
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 34*x^3 + 195*x^4 + 1225*x^5 +...
where g.f. A = A(x) satisfies the equivalent expressions:
A = 1 + x*(1-A^4)/(1-A^2) + x^2*(1-A^6)/(1-A^2) + x^3*(1-A^8)/(1-A^2) +...
A = 1 + x*(1 + A^2) + x^2*(1 + A^2 + A^4) + x^3*(1 + A^2 + A^4 + A^6) +...
-
Rest[CoefficientList[InverseSeries[Series[(2*x^2)/(1 + x^2 - Sqrt[1 - 4*x - 2*x^2 + x^4]), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Jul 30 2021 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, A^(2*k))+x*O(x^n))); polcoeff(A, n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1/((1-x)*(1 - x*A^2+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=polcoeff(1/x*serreverse(2*x^2/(1+x^2-sqrt(1-4*x-2*x^2+x^4+x^3*O(x^n)))),n)}
A171190
G.f. satisfies: A(x) = exp( Sum_{n>=1} (A(x)^n + A(-x)^n) * x^n/n ).
Original entry on oeis.org
1, 2, 3, 10, 27, 112, 336, 1490, 4791, 22138, 74079, 351288, 1207620, 5831208, 20436516, 100004994, 355610367, 1758044950, 6322608561, 31511387450, 114359284515, 573713781760, 2097612975456, 10580600244664, 38925304968612
Offset: 0
G.f.: A(x) = 1 + 2*x + 3*x^2 + 10*x^3 + 27*x^4 + 112*x^5 + 336*x^6 + 1490*x^7 + 4791*x^8 + 22138*x^9 + 74079*x^10 + 351288*x^11 + 1207620*x^12 + ...
where the logarithm of A(x) may be written as
log(A(x)) = (A(x) + A(-x))*x + (A(x)^2 + A(-x)^2)*x^2/2 + (A(x)^3 + A(-x)^3)*x^3/3 + (A(x)^4 + A(-x)^4)*x^4/4 + (A(x)^5 + A(-x)^5)*x^5/5 + ...
Incidentally, the square root of g.f. A(x) is an integer series starting
A(x)^(1/2) = 1 + x + x^2 + 4*x^3 + 9*x^4 + 43*x^5 + 108*x^6 + 558*x^7 + 1517*x^8 + 8175*x^9 + 23219*x^10 + 128516*x^11 + 375896*x^12 + ...
-
{a(n) = my(A=1+x+x*O(x^n)); for(i=1,n, A=exp(sum(m=1,n,(A^m+subst(A^m,x,-x)+x*O(x^n))*x^m/m)));polcoeff(A,n)}
-
{a(n) = my(A=1+x); for(i=1,n, A=(1-x*A+x*O(x^n))^-1*(1-x*subst(A,x,-x)+x*O(x^n))^-1);polcoeff(A,n)} \\ Paul D. Hanna, Dec 06 2009
A171191
G.f. satisfies: A(x) = exp( Sum_{n>=1} [A(x)^n + 1/A(-x)^n]*x^n/n ).
Original entry on oeis.org
1, 2, 7, 20, 73, 263, 1111, 4451, 20161, 85304, 401401, 1755593, 8465311, 37866818, 185756605, 844627115, 4196759383, 19321634594, 96962969047, 450810982796, 2280344734891, 10686378006479, 54406554842287, 256637809742444
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 20*x^3 + 73*x^4 + 263*x^5 + 1111*x^6 + ...
log(A(x)) = [A(x)+1/A(-x)]*x + [A(x)^2+1/A(-x)^2]*x^2/2 + [A(x)^3+1/A(-x)^3]*x^3/3 + ...
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=exp(sum(m=1,n,(A^m+subst(A^-m,x,-x)+x*O(x^n))*x^m/m)));polcoeff(A,n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=(1-x*A+x*O(x^n))^-1*(1-x/subst(A,x,-x)+x*O(x^n))^-1);polcoeff(A,n)} \\ Paul D. Hanna, Dec 06 2009
A259845
a(0)=1, a(1)=3, and the INVERT transform of the sequence deletes the 3.
Original entry on oeis.org
1, 3, 4, 11, 38, 136, 512, 1993, 7958, 32420, 134216, 563030, 2388092, 10224320, 44127328, 191783029, 838623654, 3686965308, 16287624440, 72262899994, 321852273332, 1438540956048, 6450223722816, 29006443606746, 130790584554748, 591191800834696
Offset: 0
The INVERT transform of (1, 3, 4, 11, 38, 136, ...) is (1, 4, 11, 38, 136, ...).
-
CoefficientList[Series[1/(2*x) + x - Sqrt[1 - 4*x - 4*x^2 + 4*x^4]/(2*x), {x, 0, 25}], x] (* Michael De Vlieger, Jun 12 2024 *)
A346506
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^2) / (1 - x + x^2).
Original entry on oeis.org
1, 2, 5, 17, 66, 274, 1190, 5341, 24577, 115326, 549747, 2654739, 12959468, 63848307, 317064921, 1585380283, 7975134892, 40332823042, 204947059412, 1045859173864, 5357606584326, 27540884494209, 142023060613755, 734506610474205, 3808771672620618, 19798640525731461, 103149287155802941
Offset: 0
-
nmax = 26; A[] = 0; Do[A[x] = (1 + x A[x]^2)/(1 - x + x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[1] = 2; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 1], {k, 2, n - 1}]; Table[a[n], {n, 0, 26}]
Showing 1-5 of 5 results.
Comments