A346626
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^3) / (1 - x).
Original entry on oeis.org
1, 2, 8, 44, 280, 1936, 14128, 107088, 834912, 6652608, 53934080, 443467136, 3689334272, 30997608960, 262651640064, 2241857334528, 19257951946240, 166362924583936, 1444351689281536, 12595885932259328, 110287974501355520, 969178569410404352, 8544982917273509888, 75565732555028701184
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = (1 + x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 23; CoefficientList[Series[Sum[(Binomial[3 k, k]/(2 k + 1)) x^k/(1 - x)^(3 k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 23}]
A349289
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^3)).
Original entry on oeis.org
1, 2, 9, 61, 493, 4371, 41065, 401563, 4044097, 41658044, 436862457, 4648331765, 50057856881, 544557984498, 5975422922413, 66059269445451, 735064865871889, 8226310738656892, 92531697191189777, 1045551973586825023, 11862334695799444993
Offset: 0
-
A349289 := proc(n)
add( binomial(n+2*k,3*k)*binomial(4*k,k)/(3*k+1),k=0..n) ;
end proc:
seq(A349289(n),n=0..50) ; # R. J. Mathar, Feb 10 2024
-
nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^3)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 2 k, 3 k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 20}]
A349290
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^4)).
Original entry on oeis.org
1, 2, 11, 96, 1001, 11456, 139013, 1756596, 22867421, 304560171, 4130200726, 56836946342, 791689962811, 11140615233281, 158140107648676, 2261708608884896, 32559326010349817, 471428798399646336, 6860801662510005266, 100302910051255600486
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
A349291
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^5)).
Original entry on oeis.org
1, 2, 13, 139, 1775, 24886, 370099, 5733304, 91518691, 1494815215, 24862931821, 419674102147, 7170713484877, 123783319369420, 2155542171446485, 37820343323942566, 667957770644685811, 11865421405897931581, 211856917750711562695, 3800040255017879663415
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A349292
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^6)).
Original entry on oeis.org
1, 2, 15, 190, 2871, 47643, 838888, 15389452, 290951545, 5629024955, 110908062511, 2217739684483, 44891645810124, 918086053852234, 18941156419798530, 393742848618632760, 8239112912485293357, 173406208518520952066, 3668419587671991125142
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]
A349293
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^7)).
Original entry on oeis.org
1, 2, 17, 249, 4345, 83285, 1694273, 35915349, 784691569, 17545398747, 399545961817, 9234298584921, 216053290499201, 5107287712887563, 121795876378121121, 2926604574330886897, 70788399943851406825, 1722188546498276868124, 42114624858397590035177
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^7)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 6 k, 7 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
-
a(n) = sum(k=0, n, binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1)); \\ Michel Marcus, Nov 14 2021
A346627
G.f. A(x) satisfies: A(x) = 1 / (1 + x) + x * A(x)^3.
Original entry on oeis.org
1, 0, 1, 2, 7, 23, 82, 300, 1129, 4334, 16914, 66899, 267586, 1080516, 4398850, 18035084, 74402361, 308624282, 1286428765, 5385578256, 22635057148, 95471113565, 403983783772, 1714494024947, 7295949019114, 31124885587680, 133085594104222, 570266646942488
Offset: 0
-
nmax = 27; A[] = 0; Do[A[x] = 1/(1 + x) + x A[x]^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = (-1)^n + Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 27}]
Table[Sum[(-1)^(n - k) Binomial[n + k, n - k] Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 27}]
A364623
G.f. satisfies A(x) = 1/(1-x)^3 + x*A(x)^3.
Original entry on oeis.org
1, 4, 18, 112, 847, 7086, 62974, 583002, 5560323, 54249583, 538873135, 5431177821, 55402340842, 570899082760, 5933922697380, 62138800690564, 654949976467593, 6942859160218698, 73972792893687427, 791722414873487767, 8508265804914763731
Offset: 0
-
a(n) = sum(k=0, n, binomial(n+5*k+2, 6*k+2)*binomial(3*k, k)/(2*k+1));
A349253
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - 2 * x * A(x)^2)).
Original entry on oeis.org
1, 3, 19, 169, 1753, 19795, 236035, 2923857, 37256881, 485202307, 6429346899, 86405569657, 1174917167881, 16134949855251, 223460304878467, 3117521211476641, 43771643214792033, 618045740600046211, 8770377489446217235, 125013010654218317385, 1789104455068153153849
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - 2 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = 1 + 2 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Table[Sum[Binomial[n + k, n - k] 2^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 20}]
a[n_] := HypergeometricPFQ[{1/3,2/3,-n,n + 1}, {1/2,1,3/2}, -(3/2)^3];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Nov 12 2021 *)
A349254
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - 3 * x * A(x)^2)).
Original entry on oeis.org
1, 4, 37, 478, 7159, 116497, 2000386, 35671756, 654218641, 12261271942, 233798163646, 4521194100541, 88458184054882, 1747850650032532, 34828329987024058, 699083528482636228, 14121906499195594537, 286877562430915732546, 5856866441794110926809
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - 3 x A[x]^2)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = 1 + 3 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 18}]
Table[Sum[Binomial[n + k, n - k] 3^k Binomial[3 k, k]/(2 k + 1), {k, 0, n}], {n, 0, 18}]
a[n_] := HypergeometricPFQ[{1/3, 2/3, -n, n + 1}, {1/2, 1, 3/2}, -81/16];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Nov 12 2021 *)
Showing 1-10 of 27 results.
Comments