A199475
G.f. satisfies A(x) = Sum_{n>=0} x^n * (1 - A(x)^(2*n+2))/(1 - A(x)^2).
Original entry on oeis.org
1, 2, 7, 34, 195, 1225, 8146, 56336, 401005, 2918308, 21614216, 162385693, 1234515922, 9479336440, 73410868630, 572719097908, 4496923141241, 35509806367132, 281814387290431, 2246608404455588, 17982234787607464, 144458551104066553, 1164342291135424494
Offset: 0
G.f.: A(x) = 1 + 2*x + 7*x^2 + 34*x^3 + 195*x^4 + 1225*x^5 +...
where g.f. A = A(x) satisfies the equivalent expressions:
A = 1 + x*(1-A^4)/(1-A^2) + x^2*(1-A^6)/(1-A^2) + x^3*(1-A^8)/(1-A^2) +...
A = 1 + x*(1 + A^2) + x^2*(1 + A^2 + A^4) + x^3*(1 + A^2 + A^4 + A^6) +...
-
Rest[CoefficientList[InverseSeries[Series[(2*x^2)/(1 + x^2 - Sqrt[1 - 4*x - 2*x^2 + x^4]), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Jul 30 2021 *)
-
{a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, A^(2*k))+x*O(x^n))); polcoeff(A, n)}
-
{a(n)=local(A=1+x);for(i=1,n,A=1/((1-x)*(1 - x*A^2+x*O(x^n))));polcoeff(A,n)}
-
{a(n)=polcoeff(1/x*serreverse(2*x^2/(1+x^2-sqrt(1-4*x-2*x^2+x^4+x^3*O(x^n)))),n)}
A349289
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^3)).
Original entry on oeis.org
1, 2, 9, 61, 493, 4371, 41065, 401563, 4044097, 41658044, 436862457, 4648331765, 50057856881, 544557984498, 5975422922413, 66059269445451, 735064865871889, 8226310738656892, 92531697191189777, 1045551973586825023, 11862334695799444993
Offset: 0
-
A349289 := proc(n)
add( binomial(n+2*k,3*k)*binomial(4*k,k)/(3*k+1),k=0..n) ;
end proc:
seq(A349289(n),n=0..50) ; # R. J. Mathar, Feb 10 2024
-
nmax = 20; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^3)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 2 k, 3 k] Binomial[4 k, k]/(3 k + 1), {k, 0, n}], {n, 0, 20}]
A349291
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^5)).
Original entry on oeis.org
1, 2, 13, 139, 1775, 24886, 370099, 5733304, 91518691, 1494815215, 24862931821, 419674102147, 7170713484877, 123783319369420, 2155542171446485, 37820343323942566, 667957770644685811, 11865421405897931581, 211856917750711562695, 3800040255017879663415
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A349292
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^6)).
Original entry on oeis.org
1, 2, 15, 190, 2871, 47643, 838888, 15389452, 290951545, 5629024955, 110908062511, 2217739684483, 44891645810124, 918086053852234, 18941156419798530, 393742848618632760, 8239112912485293357, 173406208518520952066, 3668419587671991125142
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^6)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 18}]
A349293
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^7)).
Original entry on oeis.org
1, 2, 17, 249, 4345, 83285, 1694273, 35915349, 784691569, 17545398747, 399545961817, 9234298584921, 216053290499201, 5107287712887563, 121795876378121121, 2926604574330886897, 70788399943851406825, 1722188546498276868124, 42114624858397590035177
Offset: 0
-
nmax = 18; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^7)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 6 k, 7 k] Binomial[8 k, k]/(7 k + 1), {k, 0, n}], {n, 0, 18}]
-
a(n) = sum(k=0, n, binomial(n+6*k,7*k) * binomial(8*k,k) / (7*k+1)); \\ Michel Marcus, Nov 14 2021
A349300
G.f. A(x) satisfies: A(x) = 1 / ((1 + x) * (1 - x * A(x)^4)).
Original entry on oeis.org
1, 0, 1, 4, 21, 114, 651, 3844, 23301, 144169, 906866, 5782350, 37289431, 242793439, 1593918916, 10538988984, 70121101825, 469133993094, 3154115695476, 21299373321344, 144402246424591, 982506791975780, 6706724412165956, 45917245477282994
Offset: 0
-
nmax = 23; A[] = 0; Do[A[x] = 1/((1 + x) (1 - x A[x]^4)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n + 3 k, 4 k] Binomial[5 k, k]/(4 k + 1), {k, 0, n}], {n, 0, 23}]
-
a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n+3*k,4*k) * binomial(5*k,k) / (4*k+1)); \\ Michel Marcus, Nov 14 2021
A366356
G.f. satisfies A(x) = 1/(1 - x) + x/A(x).
Original entry on oeis.org
1, 2, -1, 6, -17, 71, -292, 1284, -5807, 26961, -127627, 613815, -2990680, 14730714, -73229290, 366936232, -1851352819, 9397497759, -47957377933, 245903408245, -1266266092111, 6545667052321, -33954266444497, 176689391245147, -922112642288148, 4825154135801698
Offset: 0
-
A366356[n_]:=(-1)^(n-1)Sum[Binomial[2k-1,k]Binomial[2k-1,n-k]/(2k-1),{k,0,n}];
Array[A366356,30,0] (* Paolo Xausa, Oct 20 2023 *)
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(2*k-1, k)*binomial(2*k-1, n-k)/(2*k-1));
A366357
G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^2.
Original entry on oeis.org
1, 2, -3, 19, -105, 690, -4781, 34708, -260189, 1999169, -15660175, 124596499, -1004110947, 8179379808, -67239070867, 557098881920, -4647368670949, 39001655222788, -329048378867467, 2789241880512899, -23743798316713367, 202894843070927860
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(3*k-1, n-k)/(3*k-1));
A366358
G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^3.
Original entry on oeis.org
1, 2, -5, 40, -319, 2908, -28151, 284908, -2977115, 31875709, -347884084, 3855802690, -43283239649, 491083601339, -5622489637406, 64877058557080, -753705528179423, 8808460811302729, -103487549564845199, 1221565052783161764, -14480208437556590345
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(4*k-1, k)*binomial(4*k-1, n-k)/(4*k-1));
A366359
G.f. satisfies A(x) = 1/(1 - x) + x/A(x)^4.
Original entry on oeis.org
1, 2, -7, 69, -715, 8351, -103735, 1346247, -18035023, 247520970, -3462344959, 49181268701, -707502644111, 10286493363184, -150913708053635, 2231345941617611, -33215679733509159, 497392118745778015, -7487512016559918595, 113242852989349372915
Offset: 0
-
a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(5*k-1, n-k)/(5*k-1));
Showing 1-10 of 10 results.
Comments