cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A197916 Related to the periodic sequence A171654.

Original entry on oeis.org

0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 10, 11, 6, 7, 12, 13, 8, 9, 14, 15, 10, 11, 16, 17, 12, 13, 18, 19, 14, 15, 20, 21, 16, 17, 22, 23, 18, 19, 24, 25, 20, 21, 26, 27, 22, 23, 28, 29, 24, 25, 30, 31, 26, 27, 32, 33, 28, 29, 34, 35, 30, 31, 36, 37, 32, 33, 38, 39
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2011

Keywords

Comments

All numbers appear twice except numbers 0,1,2,3,4,5 which appear once. - From A. Salagnad, Oct 19 2011.

Crossrefs

Cf. A171654.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{0,1,6,7,2},80] (* Harvey P. Dale, Jul 30 2019 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,1,0,0,1]^n*[0;1;6;7;2])[1,1] \\ Charles R Greathouse IV, Jul 06 2017

Formula

a(n)=A171654(n) mod 10.
a(n)=Sum_k>=0 {A030308(n,k)*b(k)} with b(0)=1, b(1)=6 and b(k)=2^(k-1) for k>1.
G.f. ( -x*(-1-5*x-x^2+5*x^3) ) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 20 2011
a(n) = n/2+(11-(-1)^n)/4 -5*A057077(n)/2. - R. J. Mathar, Oct 20 2011

A014825 a(n) = 4*a(n-1) + n with n > 1, a(1)=1.

Original entry on oeis.org

1, 6, 27, 112, 453, 1818, 7279, 29124, 116505, 466030, 1864131, 7456536, 29826157, 119304642, 477218583, 1908874348, 7635497409, 30541989654, 122167958635, 488671834560, 1954687338261, 7818749353066
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 6*x^2 + 27*x^3 + 112*x^4 + 453*x^5 + 1818*x^6 + 7279*x^7 + ...
		

Crossrefs

Cf. A002450 (first differences), A052161 (partial sums).
Cf. A171654 (mod 10).

Programs

  • Magma
    [(4^(n+1)-3*n-4)/9: n in [1..30]]; // Vincenzo Librandi, Aug 23 2011
    
  • Mathematica
    RecurrenceTable[{a[1]==1,a[n]==4a[n-1]+n},a[n],{n,30}] (* Harvey P. Dale, Oct 12 2011 *)
    a[ n_]:= SeriesCoefficient[x/((1-4x)(1-x)^2), {x, 0, n}] (* Michael Somos, Jun 20 2012 *)
  • PARI
    {a(n) = polcoeff( x / ((1 - x)^2 * (1 - 4*x)) + x * O(x^n), n)} /* Michael Somos, Jun 20 2012 */
    
  • Python
    def A014825(n): return (((1<<(n+1<<1))-4)//3-n)//3 # Chai Wah Wu, Nov 12 2024
  • Sage
    [(4^(n+1) -3*n -4)/9 for n in (1..30)] # G. C. Greubel, Feb 18 2020
    

Formula

a(n) = (4^(n+1) - 3*n - 4)/9.
G.f.: x/((1-4*x)*(1-x)^2).
a(n) = Sum_{k=0..n} (n-k)*4^k = Sum_{k=0..n} k*4^(n-k). - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} binomial(n+2, k+2)*3^k [Offset 0]. - Paul Barry, Jul 30 2004
a(n) = Sum_{k=0..n} Sum_{j=0..2k} (-1)^(j+1)*J(j)*J(2k-j), J(n) = A001045(n). - Paul Barry, Oct 23 2009
Convolution square of A006314. - Michael Somos, Jun 20 2012
E.g.f.: (4*exp(4*x) - (4+3*x)*exp(x))/9. - G. C. Greubel, Feb 18 2020
a(n) = A014916(-n-1)*4^(n+1) = A091919(2*n-2) for all n in Z. - Michael Somos, Oct 02 2020
a(n) = Sum_{k=0..n} A002450(k). - Joseph Brown, May 11 2021
Last digits give A171654. - Paul Curtz, Oct 10 2021
Showing 1-2 of 2 results.