A172076 a(n) = n*(n+1)*(14*n-11)/6.
0, 1, 17, 62, 150, 295, 511, 812, 1212, 1725, 2365, 3146, 4082, 5187, 6475, 7960, 9656, 11577, 13737, 16150, 18830, 21791, 25047, 28612, 32500, 36725, 41301, 46242, 51562, 57275, 63395, 69936, 76912, 84337, 92225, 100590, 109446, 118807, 128687
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. [From Bruno Berselli, Feb 13 2014]
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
- Index to sequences related to pyramidal numbers.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. similar sequences listed in A237616.
Programs
-
GAP
List([0..40], n-> n*(n+1)*(14*n-11)/6); # G. C. Greubel, Aug 30 2019
-
Magma
[n*(n+1)*(14*n-11)/6: n in [0..40]] // G. C. Greubel, Aug 30 2019
-
Maple
A172076:=n->n*(n+1)*(14*n-11)/6; seq(A172076(n), n=0..50); # Wesley Ivan Hurt, Feb 26 2014
-
Mathematica
LinearRecurrence[{4,-6,4,-1}, {0, 1, 17, 62}, 50] (* Vincenzo Librandi, Mar 01 2012 *)
-
PARI
vector(40, n, n*(n-1)*(14*n-25)/6) \\ G. C. Greubel, Aug 30 2019
-
Sage
[n*(n+1)*(14*n-11)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
G.f.: x*(1+13*x)/(1-x)^4. - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n} A051868(i). - Bruno Berselli, Dec 15 2010
a(n) = Sum_{i=0..n-1} (n-i)*(14*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 + 45*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
Comments