cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172078 a(n) = n*(16*n^2 + 3*n - 13)/6.

Original entry on oeis.org

0, 1, 19, 70, 170, 335, 581, 924, 1380, 1965, 2695, 3586, 4654, 5915, 7385, 9080, 11016, 13209, 15675, 18430, 21490, 24871, 28589, 32660, 37100, 41925, 47151, 52794, 58870, 65395, 72385, 79856, 87824, 96305, 105315, 114870, 124986, 135679
Offset: 0

Views

Author

Vincenzo Librandi, Jan 25 2010

Keywords

Comments

Generated by the formula n*(n+1)*(2*d*n-(2*d-3))/6 for d=8.
In fact, the sequence is related to A001107 by a(n) = n*A001107(n) - Sum_{k=0..n-1} A001107(k), and this is the case d=8 in the identity n*(n*(d*n-d+2)/2) - Sum_{k=0..n-1} k*(d*k-d+2)/2 = n*(n+1)*(2*d*n-2*d+3)/6. - Bruno Berselli, Dec 14 2010
Inverse binomial transform of this sequence: 0, 1, 17, 16, 0, 0 (0 continued). - Bruno Berselli, Dec 14 2010
Principal diagonal of the convolution array A213835. - Clark Kimberling, Jul 04 2012

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014

Crossrefs

Cf. A001107.
Cf. similar sequences listed in A237616.

Programs

Formula

a(n) = n*(n+1)*(16*n-13)/6.
G.f.: x*(1+15*x)/(1-x)^4. - Bruno Berselli, Dec 14 2010
a(n) = Sum_{i=0..n-1} (n-i)*(16*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 +51*x +16*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019