A172078 a(n) = n*(16*n^2 + 3*n - 13)/6.
0, 1, 19, 70, 170, 335, 581, 924, 1380, 1965, 2695, 3586, 4654, 5915, 7385, 9080, 11016, 13209, 15675, 18430, 21490, 24871, 28589, 32660, 37100, 41925, 47151, 52794, 58870, 65395, 72385, 79856, 87824, 96305, 105315, 114870, 124986, 135679
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93. - Bruno Berselli, Feb 13 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- B. Berselli, A description of the recursive method in Comments lines: website Matem@ticamente (in Italian), 2008.
- Index to sequences related to pyramidal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n-> n*(n+1)*(16*n-13)/6); # G. C. Greubel, Aug 30 2019
-
Magma
[n*(n+1)*(16*n-13)/6: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
Maple
A172078:=n->(16*n^3+3*n^2-13*n)/6: seq(A172078(n), n=0..50); # Wesley Ivan Hurt, Jan 21 2017
-
Mathematica
LinearRecurrence[{4,-6,4,-1}, {0,1,19,70}, 50] (* Vincenzo Librandi, Mar 01 2012 *) Table[n (16n^2+3n-13)/6,{n,0,40}] (* Harvey P. Dale, Aug 14 2023 *)
-
PARI
a(n)=n*(16*n^2+3*n-13)/6 \\ Charles R Greathouse IV, Oct 07 2015
-
Sage
[n*(n+1)*(16*n-13)/6 for n in (0..40)] # G. C. Greubel, Aug 30 2019
Formula
a(n) = n*(n+1)*(16*n-13)/6.
G.f.: x*(1+15*x)/(1-x)^4. - Bruno Berselli, Dec 14 2010
a(n) = Sum_{i=0..n-1} (n-i)*(16*i+1), with a(0)=0. - Bruno Berselli, Feb 10 2014
E.g.f.: x*(6 +51*x +16*x^2)*exp(x)/6. - G. C. Greubel, Aug 30 2019
Comments