cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A172481 a(n) = (3*n*2^n+2^(n+4)+2*(-1)^n)/18.

Original entry on oeis.org

1, 2, 5, 11, 25, 55, 121, 263, 569, 1223, 2617, 5575, 11833, 25031, 52793, 111047, 233017, 487879, 1019449, 2126279, 4427321, 9204167, 19107385, 39612871, 82021945, 169636295, 350457401, 723284423, 1491308089, 3072094663, 6323146297, 13004206535, 26724240953
Offset: 0

Views

Author

Paul Curtz, Feb 04 2010

Keywords

Comments

The binomial transform is in A126184.
An elephant sequence, see A175654 and A175655. There are 24 A[5] vectors, with decimal values between 7 and 448, that lead for the corner squares to this sequence. Its companion sequence for the central square is A175656. Furthermore there are 36 A[5] vectors, with decimal values between 15 and 480, that lead for the central square to four times this sequence for n >= -1. Its companion sequence for the corner squares is A059570. - Johannes W. Meijer, Aug 15 2010
a(n) is also the number of runs of weakly increasing parts in all compositions of n+1. a(2) = 5: (111), (12), (2)(1), (3). - Alois P. Heinz, Apr 30 2017

Crossrefs

Programs

  • Magma
    [(3*n*2^n+2^(n+4)+2*(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
    
  • Mathematica
    Table[(3n 2^n+2^(n+4)+2(-1)^n)/18,{n,0,40}]  (* or *)
    CoefficientList[Series[(1-x-x^2)/((1+x)(1-2x)^2), {x,0,40}], x]  (* Harvey P. Dale, Mar 28 2011 *)
  • PARI
    a(n)=(3*n*2^n+2^(n+4)+2*(-1)^n)/18 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1-x-x^2)/((1+x)*(1-2*x)^2).
a(n) = A001045(n-1)+2*a(n-1), n>0.
a(n)+A139790(n) = 2^(n+1) = A000079(n+1).
a(n) = A139790(n)+A140960(n).
a(n) = A001045(n)+(-1)^n*A084219(n).
a(n) = A127984(n) + 2^(n-1). Application: Problem 11623, AMM 119 (2012) 161. - Stephen J. Herschkorn, Feb 11 2012

Extensions

Definition replaced by explicit formula by R. J. Mathar, Feb 11 2010