cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A059570 Number of fixed points in all 231-avoiding involutions in S_n.

Original entry on oeis.org

1, 2, 6, 14, 34, 78, 178, 398, 882, 1934, 4210, 9102, 19570, 41870, 89202, 189326, 400498, 844686, 1776754, 3728270, 7806066, 16311182, 34020466, 70837134, 147266674, 305718158, 633805938, 1312351118, 2714180722, 5607318414, 11572550770, 23860929422
Offset: 1

Views

Author

Emeric Deutsch, Feb 16 2001

Keywords

Comments

Number of odd parts in all compositions (ordered partitions) of n: a(3)=6 because in 3=2+1=1+2=1+1+1 we have 6 odd parts. Number of even parts in all compositions (ordered partitions) of n+1: a(3)=6 because in 4=3+1=1+3=2+2=2+1+1=1+2+1=1+1+2=1+1+1+1 we have 6 even parts.
Convolved with (1, 2, 2, 2, ...) = A001787: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
An elephant sequence, see A175654. For the corner squares 36 A[5] vectors, with decimal values between 15 and 480, lead to this sequence. For the central square these vectors lead to the companion sequence 4*A172481, for n>=-1. - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of runs of equal parts in the compositions of n. a(5) = 34 because there are 34 runs of equal parts in the compositions of 5, with parentheses enclosing each run: (5), (4)(1), (1)(4), (3)(2), (2)(3), (3)(1,1), (1)(3)(1), (1,1)(3), (2,2)(1), (2)(1)(2), (1)(2,2), (2)(1,1,1), (1)(2)(1,1), (1,1)(2)(1), (1,1,1)(2), (1,1,1,1,1). - Gregory L. Simay, Apr 28 2017
a(n) - a(n-2) is the number of 1's in all compositions of n and more generally, the number of k's in all compositions of n+k-1. - Gregory L. Simay, May 01 2017

Examples

			a(3) = 6 because in the 231-avoiding involutions of {1,2,3}, i.e., in 123, 132, 213, 321, we have altogether 6 fixed points (3+1+1+1).
		

Crossrefs

Programs

  • Magma
    [(3*n+4)*2^n/18-2*(-1)^n/9: n in [1..40]]; // Vincenzo Librandi, May 01 2017
  • Mathematica
    LinearRecurrence[{3,0,-4},{1,2,6},30] (* Harvey P. Dale, Dec 29 2013 *)
    Table[(3 n + 4) 2^n/18 - 2 (-1)^n/9, {n, 30}] (* Vincenzo Librandi, May 01 2017 *)

Formula

a(n) = (3*n+4)*2^n/18 - 2*(-1)^n/9.
G.f.: z*(1-z)/((1+z)*(1-2*z)^2).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(n-k, k+j)*2^k. - Paul Barry, Aug 29 2004
a(n) = Sum_{k=0..n+1} (-1)^(k+1)*binomial(n+1, k+j)*A001045(k). - Paul Barry, Jan 30 2005
Convolution of "Expansion of (1-x)/(1-x-2*x^2)" (A078008) with "Powers of 2" (A000079), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
Convolution of "Difference sequence of A045623" (A045891) with "Positive integers repeated" (A008619), treating the result as if offset=1. - Graeme McRae, Jul 12 2006
a(n) = 3*a(n-1)-4*a(n-3); a(1)=1,a(2)=2,a(3)=6. - Philippe Deléham, Aug 30 2006
Equals row sums of A128255. (1, 2, 6, 14, 34, ...) - (0, 0, 1, 2, 6, 14, 34, ...) = A045623: (1, 2, 5, 12, 28, 64, ...). - Gary W. Adamson, Feb 20 2007
Equals triangle A059260 * [1, 2, 3, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) + a(n-1) = A001792(n-1). - Gregory L. Simay, Apr 30 2017
a(n) - a(n-2) = A045623(n-1). - Gregory L. Simay, May 01 2017
a(n) = A045623(n-1) + A045623(n-3) + A045623(n-5) + ... - Gregory L. Simay, Feb 19 2018
a(n) = A225084(2n,n). - Alois P. Heinz, Aug 30 2018

Extensions

More terms from Eugene McDonnell (eemcd(AT)mac.com), Jan 13 2005

A175654 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1 - x - x^2)/(1 - 3*x - x^2 + 6*x^3).

Original entry on oeis.org

1, 2, 6, 14, 36, 86, 210, 500, 1194, 2822, 6660, 15638, 36642, 85604, 199626, 464630, 1079892, 2506550, 5811762, 13462484, 31159914, 72071654, 166599972, 384912086, 888906306, 2052031172, 4735527306, 10925175254, 25198866036, 58108609526, 133973643090
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010; edited Jun 21 2013

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the center square the bishop flies into a rage and turns into a raging elephant.
In chaturanga, the old Indian version of chess, one of the pieces was called gaja, elephant in Sanskrit. The Arabs called the game shatranj and the elephant became el fil in Arabic. In Spain chess became chess as we know it today but surprisingly in Spanish a bishop isn't a Christian bishop but a Moorish elephant and it still goes by its original name of el alfil.
On a 3 X 3 chessboard there are 2^9 = 512 ways for an elephant to fly into a rage on the central square (off the center the piece behaves like a normal bishop). The elephant is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program and A180140. For the corner squares the 512 elephants lead to 46 different elephant sequences, see the overview of elephant sequences and the crossreferences.
The sequence above corresponds to 16 A[5] vectors with decimal values 71, 77, 101, 197, 263, 269, 293, 323, 326, 329, 332, 353, 356, 389, 449 and 452. These vectors lead for the side squares to A000079 and for the central square to A175655.

References

  • Gary Chartrand, Introductory Graph Theory, pp. 217-221, 1984.
  • David Hooper and Kenneth Whyld, The Oxford Companion to Chess, pp. 74, 366, 1992.

Crossrefs

Cf. Elephant sequences corner squares [decimal value A[5]]: A040000 [0], A000027 [16], A000045 [1], A094373 [2], A000079 [3], A083329 [42], A027934 [11], A172481 [7], A006138 [69], A000325 [26], A045623 [19], A000129 [21], A095121 [170], A074878 [43], A059570 [15], A175654 [71, this sequence], A026597 [325], A097813 [58], A057711 [27], 2*A094723 [23; n>=-1], A002605 [85], A175660 [171], A123203 [186], A066373 [59], A015518 [341], A134401 [187], A093833 [343].

Programs

  • Magma
    [n le 3 select Factorial(n) else 3*Self(n-1) +Self(n-2) -6*Self(n-3): n in [1..41]]; // G. C. Greubel, Dec 08 2021
    
  • Maple
    nmax:=28; m:=1; A[1]:=[0,0,0,0,1,0,0,0,1]: A[2]:=[0,0,0,1,0,1,0,0,0]: A[3]:=[0,0,0,0,1,0,1,0,0]: A[4]:=[0,1,0,0,0,0,0,1,0]: A[5]:=[0,0,1,0,0,0,1,1,1]: A[6]:=[0,1,0,0,0,0,0,1,0]: A[7]:=[0,0,1,0,1,0,0,0,0]: A[8]:=[0,0,0,1,0,1,0,0,0]: A[9]:=[1,0,0,0,1,0,0,0,0]: A:=Matrix([A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8], A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{3,1,-6}, {1,2,6}, 80] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2012 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -6,1,3]^n*[1;2;6])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [( (1-x-x^2)/((1-2*x)*(1-x-3*x^2)) ).series(x,n+1).list()[n] for n in (0..40)] # G. C. Greubel, Dec 08 2021

Formula

G.f.: (1 - x - x^2)/(1 - 3*x - x^2 + 6*x^3).
a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) with a(0)=1, a(1)=2 and a(2)=6.
a(n) = ((6+10*A)*A^(-n-1) + (6+10*B)*B^(-n-1))/13 - 2^n with A = (-1+sqrt(13))/6 and B = (-1-sqrt(13))/6.
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n)*2*A000244(n)/(A075118(n) - A006130(n-1)*sqrt(13)).
a(n) = b(n) - b(n-1) - b(n-2), where b(n) = Sum_{k=1..n} Sum_{j=0..k} binomial(j,n-3*k+2*j)*(-6)^(k-j)*binomial(k,j)*3^(3*k-n-j), n>0, b(0)=1, with a(0) = b(0), a(1) = b(1) - b(0). - Vladimir Kruchinin, Aug 20 2010
a(n) = 2*A006138(n) - 2^n = 2*(A006130(n) + A006130(n-1)) - 2^n. - G. C. Greubel, Dec 08 2021
E.g.f.: 2*exp(x/2)*(13*cosh(sqrt(13)*x/2) + 3*sqrt(13)*sinh(sqrt(13)*x/2))/13 - cosh(2*x) - sinh(2*x). - Stefano Spezia, Feb 12 2023

A175655 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).

Original entry on oeis.org

1, 4, 8, 22, 50, 124, 290, 694, 1628, 3838, 8978, 21004, 48962, 114022, 265004, 615262, 1426658, 3305212, 7650722, 17697430, 40911740, 94528318, 218312114, 503994220, 1163124866, 2683496134, 6189647948, 14273690782
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

a(n) represents the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
For the central square the 512 elephants lead to 46 different elephant sequences, see the cross-references for examples.
The sequence above corresponds to 16 A[5] vectors with decimal values 71, 77, 101, 197, 263, 269, 293, 323, 326, 329, 332, 353, 356, 389, 449 and 452. These vectors lead for the side squares to A000079 and for the corner squares to A175654.

Crossrefs

Cf. Elephant sequences central square [decimal value A[5]]: A000007 [0], A000012 [16], A000045 [1], A011782 [2], A000079 [3], A003945 [42], A099036 [11], A175656 [7], A105476 [69], A168604 [26], A045891 [19], A078057 [21], A151821 [170], A175657 [43], 4*A172481 [15; n>=-1], A175655 [71, this sequence], 4*A026597 [325; n>=-1], A033484 [58], A087447 [27], A175658 [23], A026150 [85], A175661 [171], A036563 [186], A098156 [59], A046717 [341], 2*A001792 [187; n>=1 with a(0)=1], A175659 [343].

Programs

  • Magma
    I:=[1, 4, 8]; [n le 3 select I[n] else 3*Self(n-1)+Self(n-2)-6*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    with(LinearAlgebra): nmax:=27; m:=5; A[5]:= [0,0,1,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + x - 5 x^2) / (1 - 3 x - x^2 + 6 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,1,-6},{1,4,8},40] (* Harvey P. Dale, Dec 25 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; -6,1,3]^n*[1;4;8])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: (1+x-5*x^2)/(1-3*x-x^2+6*x^3).
a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) with a(0)=1, a(1)=4 and a(2)=8.
a(n) = ((10+8*A)*A^(-n-1) + (10+8*B)*B^(-n-1))/13 - 2^n with A = (-1+sqrt(13))/6 and B = (-1-sqrt(13))/6.
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n)*2*A000244(n)/(A075118(n)-A006130(n-1)*sqrt(13)).
E.g.f.: 2*exp(x/2)*(13*cosh(sqrt(13)*x/2) + 5*sqrt(13)*sinh(sqrt(13)*x/2))/13 - cosh(2*x) - sinh(2*x). - Stefano Spezia, Jan 31 2023

A127984 a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.

Original entry on oeis.org

1, 3, 7, 17, 39, 89, 199, 441, 967, 2105, 4551, 9785, 20935, 44601, 94663, 200249, 422343, 888377, 1864135, 3903033, 8155591, 17010233, 35418567, 73633337, 152859079, 316902969, 656175559, 1357090361, 2803659207, 5786275385, 11930464711, 24576757305
Offset: 1

Views

Author

Artur Jasinski, Feb 09 2007

Keywords

Comments

a(n) is the number of runs of strictly increasing parts in all compositions of n. a(3) = 7: (1)(1)(1), (12), (2)(1), (3). - Alois P. Heinz, Apr 30 2017
From Hugo Pfoertner, Feb 19 2020: (Start)
a(n)/2^(n-2) apparently is the expected number of flips of a fair coin to completion of a game where the player advances by 1 for heads and by 2 for tails, starting at position 0 and repeating to flip until the target n+1 is exactly reached. If the position n (1 below the target) is reached, the player stays at this position and continues to flip the coin and count the flips until he can advance by 1.
The expected number of flips for targets 1, 2, 3,... , found by inversion of the corresponding Markov matrices, is 2, 2, 3, 7/2, 17/4, 39/8, 89/16, 199/32, 441/64, ...
Target 1 needs an expected number of 2 flips and would require a(0) = 1/2.
n=1, target n+1 = 2: 1 / 2^(1-2) = 2;
n=2, target n+1 = 3: 3 / 2^(2-2) = 3;
n=3, target n+1 = 4: 7 / 2^(3-2) = 7/2.
(End)

Crossrefs

Programs

  • Magma
    [(n/3+7/9)*2^(n-1)+(-1)^n/9: n in [1..35]]; // Vincenzo Librandi, Jun 15 2017
  • Maple
    A127984:=n->(n/3 + 7/9)*2^(n - 1) + (-1)^n/9; seq(A127984(n), n=1..50); # Wesley Ivan Hurt, Mar 14 2014
  • Mathematica
    Table[(n/3 + 7/9)2^(n - 1) + (-1)^n/9, {n, 50}] (* Artur Jasinski *)
    CoefficientList[Series[(1 - 2 x^2) / ((-1 + 2 x)^2 (1 + x)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 15 2017 *)

Formula

a(n) = (n/3 + 7/9)*2^(n - 1) + (-1)^n/9.
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: -x*(-1+2x^2)/((-1+2x)^2*(1+x)).
a(n) = 3*a(n-1) - 4*a(n-3). (End)
a(n) + a(n+1) = A087447(n+1). - R. J. Mathar, Feb 21 2009
A172481(n) = a(n) + 2^(n-1). Application: Problem 11623, AMM 119 (2012) 161. - Stephen J. Herschkorn, Feb 11 2012
From Wolfdieter Lang, Jun 14 2017: (Start)
a(n) = f(n+1)*2^(n-1), where f(n) is a rational Fibonacci type sequence based on fuse(a,b) = (a+b+1)/2 with f(0) = 0, f(1) = 1 and f(n) = fuse(f(n-1),f(n-2)), for n >= 2. For fuse(a,b) see the Jeff Erickson link under A188545. Proof: f(n) = (3*n+4 - (-1)^n/2^(n-2))/9, n >= 0, by induction.
a(n) = a(n-1) + a(n-2) + 2^(n-2), n >= 1, with inputs a(-1) = 0, a(0) = 1/2.
(End)
E.g.f.: (2*exp(-x) + exp(2*x)*(7 + 6*x) - 9)/18. - Stefano Spezia, Feb 19 2020

A175656 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1-3*x^2)/(1-3*x+4*x^3).

Original entry on oeis.org

1, 3, 6, 14, 30, 66, 142, 306, 654, 1394, 2958, 6258, 13198, 27762, 58254, 121970, 254862, 531570, 1106830, 2301042, 4776846, 9903218, 20505486, 42409074, 87614350, 180821106, 372827022, 768023666, 1580786574, 3251051634
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 7, 13, 37, 67, 70, 73, 76, 97, 100, 133, 193, 196, 259, 262, 265, 268, 289, 292, 322, 328, 352, 385, 388 and 448. These vectors lead for the side squares to A000079 and for the corner squares to A172481.

Crossrefs

Cf. A175655 (central square).

Programs

  • Magma
    [((3*n+22)*2^n-4*(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
    
  • Maple
    with(LinearAlgebra): nmax:=29; m:=5; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 - 3 x^2)/(1 - 3 x + 4 x^3), {x, 0, 29}], x] (* Michael De Vlieger, Nov 02 2018 *)
    LinearRecurrence[{3,0,-4},{1,3,6},30] (* Harvey P. Dale, Aug 12 2020 *)
  • PARI
    vector(40, n, n--; ((3*n+22)*2^n - 4*(-1)^n)/18) \\ G. C. Greubel, Nov 03 2018

Formula

G.f.: (1-3*x^2)/(1 - 3*x + 4*x^3).
a(n) = 3*a(n-1) - 4*a(n-3) with a(0)=1, a(1)=3 and a(2)=6.
a(n) = ((3*n+22)*2^n - 4*(-1)^n)/18.

A126184 Number of hex trees with n edges and having no nonroot nodes of outdegree 2.

Original entry on oeis.org

1, 3, 10, 33, 108, 351, 1134, 3645, 11664, 37179, 118098, 373977, 1180980, 3720087, 11691702, 36669429, 114791256, 358722675, 1119214746, 3486784401, 10847773692, 33705582543, 104603532030, 324270949293, 1004193907488
Offset: 0

Views

Author

Emeric Deutsch, Dec 19 2006

Keywords

Comments

A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a middle child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference).

Crossrefs

Programs

  • Maple
    1,seq(3^(n-2)*(n+8),n=1..28);

Formula

a(n) = A126183(n,0).
a(n) = (n+8)*3^(n-2) for n >= 1; a(0)=1.
G.f.: (1-3z+z^2)/(1-3z)^2.
From Paul Curtz, Mar 27 2022: (Start)
a(n+1) = 3*a(n) + A140429(n), for n >= 0; a(0)=1.
Binomial transform of A172481(n) for n >= 0.
Also, with a different offset, the binomial transform of A045891(n+2) for n >= 0. (End)

A348405 a(0) = 1, a(n) + a(n+1) = round(2^n/9), n >= 0.

Original entry on oeis.org

1, -1, 1, -1, 2, 0, 4, 3, 11, 17, 40, 74, 154, 301, 609, 1211, 2430, 4852, 9712, 19415, 38839, 77669, 155348, 310686, 621382, 1242753, 2485517, 4971023, 9942058, 19884104, 39768220, 79536427, 159072867, 318145721, 636291456, 1272582898, 2545165810
Offset: 0

Views

Author

Paul Curtz, Oct 17 2021

Keywords

Crossrefs

Cf. A139797 (a(n) + a(n+1) = round(2^n/9) too, but a(0) = 0).

Programs

  • Mathematica
    CoefficientList[ Series[(x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2), {x, 0, 40}], x] (* Thomas Scheuerle, Oct 17 2021 *)
    nxt[{n_,a_}]:={n+1,Round[(2^n)/9]-a}; NestList[nxt,{0,1},40][[All,2]] (* or *) LinearRecurrence[{1,2,-1,1,2},{1,-1,1,-1,2},40] (* Harvey P. Dale, Apr 28 2022 *)

Formula

a(n+1) = 2*a(n) - A104581(n+6).
a(n) + a(n+1) = A113405(n).
a(n) + a(n+3) = A001045(n).
a(n+2) = a(n) + A131666(n).
From Thomas Scheuerle, Oct 18 2021: (Start)
G.f.: (x^4-x^3+2x-1)/((2*x^3-3*x^2+3*x-1)*(x+1)^2).
A172481(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2*n-k). With negative sign for ...*a(1+2*n-k) and ...*a(3+2*n-k) too.
A175656(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(2+2*n-k).
A136298(n+1) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*a(4+2*n-k).
A348407(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n, k)*(a(2+2*n-k) - 2*a(1+2*n-k) - a(2*n-k)).
(End)

Extensions

a(22)-a(36) from Thomas Scheuerle, Oct 17 2021
Showing 1-7 of 7 results.