A011782
Coefficients of expansion of (1-x)/(1-2*x) in powers of x.
Original entry on oeis.org
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0
Lee D. Killough (killough(AT)wagner.convex.com)
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 16*x^5 + 32*x^6 + 64*x^7 + 128*x^8 + ...
( -1 1 -1)
det ( 1 1 1) = 4
( -1 -1 -1)
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
- S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
- Xavier Merlin, Methodix Algèbre, Ellipses, 1995, p. 153.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Michael A. Allen, On a Two-Parameter Family of Generalizations of Pascal's Triangle, arXiv:2209.01377 [math.CO], 2022.
- Christopher Bao, Yunseo Choi, Katelyn Gan, and Owen Zhang, On a Conjecture by Baril, Cerbai, Khalil, and Vajnovszki on Two Restricted Stacks, arXiv:2308.09344 [math.CO], 2023.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Christian Bean, Bjarki Gudmundsson, and Henning Ulfarsson, Automatic discovery of structural rules of permutation classes, arXiv:1705.04109 [math.CO], 2017.
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 14.
- Giulio Cerbai, Anders Claesson, and Luca Ferrari, Stack sorting with restricted stacks, arXiv:1907.08142 [cs.DS], 2019.
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015.
- Johann Cigler, Recurrences for certain sequences of binomial sums in terms of (generalized) Fibonacci and Lucas polynomials, arXiv:2212.02118 [math.NT], 2022.
- Bishal Deb, Cyclic sieving phenomena via combinatorics of continued fractions, arXiv:2508.13709 [math.CO], 2025. See p. 42.
- Colin Defant and Kai Zheng, Stack-sorting with consecutive-pattern-avoiding stacks, arXiv:2008.12297 [math.CO], 2020.
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 10.
- Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
- Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 25.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- Mats Granvik, Alternating powers of 2 as convoluted divisor recurrence
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- Nickolas Hein and Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016. See Table 1.1 p. 2.
- S. Heubach and T. Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- S. Hougardy, Classes of perfect graphs, Discr. Math. 306 (2006), 2529-2571.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv:1201.6243v1 [math.CO], 2012 (Corollary 3, case k=2, pages 10-11). - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. Also on arXiv, arXiv:1302.2274 [math.CO], 2013.
- Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
- R. A. Proctor, Let's Expand Rota's Twelvefold Way for Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
- L. Pudwell, Pattern avoidance in trees (slides from a talk, mentions many sequences), 2012. - From _N. J. A. Sloane_, Jan 03 2013
- Santiago Rojas-Rojas, Camila Muñoz, Edgar Barriga, Pablo Solano, Aldo Delgado, and Carla Hermann-Avigliano, Analytic Evolution for Complex Coupled Tight-Binding Models: Applications to Quantum Light Manipulation, arXiv:2310.12366 [quant-ph], 2023. See p. 12.
- R. Simion and F. W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985, see pp. 392-393.
- Christoph Wernhard and Wolfgang Bibel, Learning from Łukasiewicz and Meredith: Investigations into Proof Structures (Extended Version), arXiv:2104.13645 [cs.AI], 2021.
- Yan X. Zhang, Four Variations on Graded Posets, arXiv preprint arXiv:1508.00318 [math.CO], 2015.
- Index entries for sequences related to Boolean functions
- Index to divisibility sequences
- Index entries for related partition-counting sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to Chebyshev polynomials.
-
a011782 n = a011782_list !! n
a011782_list = 1 : scanl1 (+) a011782_list
-- Reinhard Zumkeller, Jul 21 2013
-
[Floor((1+2^n)/2): n in [0..35]]; // Vincenzo Librandi, Aug 21 2011
-
A011782:= n-> ceil(2^(n-1)): seq(A011782(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
with(PolynomialTools): A011782:=seq(coeftayl((1-x)/(1-2*x), x = 0, k),k=0..10^2); # Muniru A Asiru, Sep 26 2017
-
f[s_] := Append[s, Ceiling[Plus @@ s]]; Nest[f, {1}, 32] (* Robert G. Wilson v, Jul 07 2006 *)
CoefficientList[ Series[(1-x)/(1-2x), {x, 0, 32}], x] (* Robert G. Wilson v, Jul 07 2006 *)
Table[Sum[StirlingS2[n, k], {k,0,2}], {n, 0, 30}] (* Robert A. Russell, Apr 25 2018 *)
Join[{1},NestList[2#&,1,40]] (* Harvey P. Dale, Dec 06 2018 *)
-
{a(n) = if( n<1, n==0, 2^(n-1))};
-
Vec((1-x)/(1-2*x) + O(x^30)) \\ Altug Alkan, Oct 31 2015
-
def A011782(n): return 1 if n == 0 else 2**(n-1) # Chai Wah Wu, May 11 2022
-
[sum(stirling_number2(n,j) for j in (0..2)) for n in (0..35)] # G. C. Greubel, Jun 02 2020
A001792
a(n) = (n+2)*2^(n-1).
Original entry on oeis.org
1, 3, 8, 20, 48, 112, 256, 576, 1280, 2816, 6144, 13312, 28672, 61440, 131072, 278528, 589824, 1245184, 2621440, 5505024, 11534336, 24117248, 50331648, 104857600, 218103808, 452984832, 939524096, 1946157056, 4026531840, 8321499136, 17179869184, 35433480192
Offset: 0
a(0) = 1, a(1) = 2*1 + 1 = 3, a(2) = 2*3 + 2 = 8, a(3) = 2*8 + 4 = 20, a(4) = 2*20 + 8 = 48, a(5) = 2*48 + 16 = 112, a(6) = 2*112 + 32 = 256, ... - _Philippe Deléham_, Apr 19 2009
a(2) = 8 since there are 8 length-4 binary sequences with a subsequence of ones of length 2 or more, namely, 1111, 1110, 1101, 1011, 0111, 1100, 0110, and 0011. - _Dennis P. Walsh_, Oct 25 2012
G.f. = 1 + 3*x + 8*x^2 + 20*x^3 + 48*x^4 + 112*x^5 + 256*x^6 + 576*x^7 + ...
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. M. Stepin and A. T. Tagi-Zade, Words with restrictions, pp. 67-74 of Kvant Selecta: Combinatorics I, Amer. Math. Soc., 2001 (G_n on p. 70).
- T. D. Noe, Table of n, a(n) for n = 0..500
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math., Vol. 335 (2014), pp. 1-7. MR3248794.
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014.
- Milica Andelic, C. M. da Fonseca and A. Pereira, The mu-permanent, a new graph labeling, and a known integer sequence, arXiv preprint arXiv:1609.04208 [math.CO], 2016.
- Félix Balado and Guénolé C. M. Silvestre, Runs of Ones in Binary Strings, arXiv:2302.11532 [math.CO], 2023. See pp. 6-7.
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- Neil J. Calkin, A curious binomial identity, Discr. Math., Vol. 131, No. 1-3 (1994), pp. 335-337.
- Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., Vol. 3 (2000), #00.1.5.
- Filippo Disanto and Simone Rinaldi, Symmetric convex permutominoes and involutions, PU. M. A., Vol. 22, No. 1 (2011), pp. 39-60.
- Frank Ellermann, Illustration of binomial transforms.
- David Eppstein, Non-crossing Hamiltonian Paths and Cycles in Output-Polynomial Time, arXiv:2303.00147 [cs.CG], 2023, pp. 2, 19.
- Guillermo Esteban, Clemens Huemer and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
- M. Hirschhorn, Calkin's binomial identity, Discr. Math., Vol. 159, No. 1-3 (1996), pp. 273-278.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 146.
- Milan Janjić, Two Enumerative Functions
- Milan Janjić and Boris Petković, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
- Milan Janjić and Boris Petković, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A., Vol. 62, No. 2 (1946), pp. 187-203.
- Sergey Kitaev and Jeffrey B. Remmel, A note on p-Ascent Sequences, Preprint, 2016.
- Sergey Kitaev and Jeffrey Remmel, p-Ascent Sequences, arXiv preprint arXiv:1503.00914 [math.CO], 2015.
- Ivaylo Kortezov, problem 8.4 ("Задача 8.4" in Bulgarian) in National Math Contest "Atanas Radev" 2020.
- Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
- Maohua Le, Two Classes of Smarandache Determinants, Scientia Magna, Vol. 2, No. 1 (2006), pp. 20-25.
- Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021.
- John Riordan and N. J. A. Sloane, Correspondence, 1974.
- N. J. A. Sloane, Transforms.
- I. Tasoulas, K. Manes, and A. Sapounakis, Hamiltonian intervals in the lattice of binary paths, Elect. J. Comb. (2024) Vol. 31, Issue 1, P1.39.
- Jun Wang and Zhizheng Zhang, On extensions of Calkin's binomial identities, Discrete Math., Vol. 274 (2004), 331-342.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
- Index entries for sequences related to Chebyshev polynomials.
-
List([0..35],n->(n+2)*2^(n-1)); # Muniru A Asiru, Sep 25 2018
-
a001792 n = a001792_list !! n
a001792_list = scanl1 (+) a045623_list
-- Reinhard Zumkeller, Jul 21 2013
-
[(n+2)*2^(n-1): n in [0..40]]; // Vincenzo Librandi, Nov 10 2014
-
A001792 := n-> (n+2)*2^(n-1);
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/4, n=2..30); # Zerinvary Lajos, Oct 09 2006
A001792:=-(-3+4*z)/(2*z-1)^2; # Simon Plouffe in his 1992 dissertation, which gives the sequence without the initial 1
G(x):=1/exp(2*x)*(1-x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1],x) od: x:=0: seq(abs(f[n]),n=0..28 ); # Zerinvary Lajos, Apr 17 2009
a := n -> hypergeom([-n, 2], [1], -1);
seq(round(evalf(a(n),32)), n=0..31); # Peter Luschny, Aug 02 2014
-
matrix[n_Integer /; n >= 1] := Table[Abs[p - q] + 1, {q, n}, {p, n}]; a[n_Integer /; n >= 1] := Abs[Det[matrix[n]]] (* Josh Locker (joshlocker(AT)macfora.com), Apr 29 2004 *)
g[n_,m_,r_] := Binomial[n - 1, r - 1] Binomial[m + 1, r] r; Table[1 + Sum[g[n, k - n, r], {r, 1, k}, {n, 1, k - 1}], {k, 1, 29}] (* Geoffrey Critzer, Jul 02 2009 *)
a[n_] := (n + 2)*2^(n - 1); a[Range[0, 40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{4, -4}, {1, 3}, 40] (* Harvey P. Dale, Aug 29 2011 *)
CoefficientList[Series[(1 - x) / (1 - 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 10 2014 *)
b[i_]:=i; a[n_]:=Abs[Det[ToeplitzMatrix[Array[b, n], Array[b, n]]]]; Array[a, 40] (* Stefano Spezia, Sep 25 2018 *)
a[n_]:=Hypergeometric2F1[2,-n+1,1,-1];Array[a,32] (* Giorgos Kalogeropoulos, Jan 04 2022 *)
-
A001792(n)=(n+2)<<(n-1) \\ M. F. Hasler, Dec 17 2008
-
for n in range(0,40): print(int((n+2)*2**(n-1)), end=' ') # Stefano Spezia, Oct 16 2018
A003945
Expansion of g.f. (1+x)/(1-2*x).
Original entry on oeis.org
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
- F. Faase, Counting Hamiltonian cycles in product graphs
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 151
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 304
- Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012
- C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (2).
- Index entries for sequences related to trees
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30:
A170732,
A170733,
A170734,
A170735,
A170736,
A170737,
A170738,
A170739,
A170740,
A170741,
A170742,
A170743,
A170744,
A170745,
A170746,
A170747,
A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50:
A170749,
A170750,
A170751,
A170752,
A170753,
A170754,
A170755,
A170756,
A170757,
A170758,
A170759,
A170760,
A170761,
A170762,
A170763,
A170764,
A170765,
A170766,
A170767,
A170768,
A170769.
-
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
-
Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[2^n+Floor[2^(n-1)], {n,0,30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* Harvey P. Dale, May 04 2017 *)
-
a(n)=if(n,3<Charles R Greathouse IV, Jan 12 2012
A033484
a(n) = 3*2^n - 2.
Original entry on oeis.org
1, 4, 10, 22, 46, 94, 190, 382, 766, 1534, 3070, 6142, 12286, 24574, 49150, 98302, 196606, 393214, 786430, 1572862, 3145726, 6291454, 12582910, 25165822, 50331646, 100663294, 201326590, 402653182, 805306366, 1610612734, 3221225470
Offset: 0
Binary: 1, 100, 1010, 10110, 101110, 1011110, 10111110, 101111110, 1011111110, 10111111110, 101111111110, 1011111111110, 10111111111110,
G.f. = 1 + 4*x + 10*x^2 + 22*x^3 + 46*x^4 + 94*x^5 + 190*x^6 + 382*x^7 + ...
- J. Riordan, Series-parallel realization of the sum modulo 2 of n switching variables, in Claude Elwood Shannon: Collected Papers, edited by N. J. A. Sloane and A. D. Wyner, IEEE Press, NY, 1993, pp. 877-878.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 3, 10.
- Dennis E. Davenport, Shakuan K. Frankson, Louis W. Shapiro, and Leon C. Woodson, An Invitation to the Riordan Group, Enum. Comb. Appl. (2024) Vol. 4, No. 3, Art. #S2S1. See p. 22.
- Erik D. Demaine et al., Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012, 2014. See p. 8, actually length(Sn) is 2^n+2^(n-1)-2, that is, a(n-1).
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Egor Lappo and Noah A. Rosenberg, A lattice structure for ancestral configurations arising from the relationship between gene trees and species trees, Adv. Appl. Math. 343 (2024), 65-81.
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Eric Weisstein's World of Mathematics, Independent Vertex Set
- Eric Weisstein's World of Mathematics, Vertex Cover
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([0..35], n-> 3*2^n -2); # G. C. Greubel, Nov 18 2019
-
a033484 = (subtract 2) . (* 3) . (2 ^)
a033484_list = iterate ((subtract 2) . (* 2) . (+ 2)) 1
-- Reinhard Zumkeller, Apr 23 2013
-
[3*2^n-2: n in [1..36]]; // Vincenzo Librandi, Nov 22 2010
-
with(combinat):a:=n->stirling2(n,2)+stirling2(n+1,2): seq(a(n), n=1..35); # Zerinvary Lajos, Oct 07 2007
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=(a[n-1]+1)*2 od: seq(a[n], n=1..35); # Zerinvary Lajos, Feb 22 2008
-
Table[3 2^n - 2, {n, 0, 35}] (* Vladimir Joseph Stephan Orlovsky, Dec 16 2008 *)
(* Start from Eric W. Weisstein, Sep 21 2017 *)
3*2^Range[0, 35] - 2
LinearRecurrence[{3, -2}, {1, 4}, 36]
CoefficientList[Series[(1+x)/(1-3x+2x^2), {x, 0, 35}], x] (* End *)
-
a(n) = 3<Charles R Greathouse IV, Nov 02 2011
-
[3*2^n -2 for n in (0..35)] # G. C. Greubel, Nov 18 2019
A036563
a(n) = 2^n - 3.
Original entry on oeis.org
-2, -1, 1, 5, 13, 29, 61, 125, 253, 509, 1021, 2045, 4093, 8189, 16381, 32765, 65533, 131069, 262141, 524285, 1048573, 2097149, 4194301, 8388605, 16777213, 33554429, 67108861, 134217725, 268435453, 536870909, 1073741821, 2147483645
Offset: 0
a(2) = 1;
a(3) = 2 + 1 + 2 = 5;
a(4) = 4 + 2 + 1 + 2 + 4 = 13;
a(5) = 8 + 4 + 2 + 1 + 2 + 4 + 8 = 29; etc. - _Philippe Deléham_, Feb 24 2014
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Paul Barry, Conjectures and results on some generalized Rueppel sequences, arXiv:2107.00442 [math.CO], 2021.
- Yael Berstein and Shmuel Onn, The Graver complexity of integer programming, Annals of Combinatorics, Vol. 13, No. 3 (2009), pp. 289-296; arXiv preprint, arXiv:0709.1500 [math.CO], 2007.
- L' Education Mathématique, Problème 8907, 49e Annee, No 14, 15 Avril 1947, p. 113
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
- Irving Kaplansky and John Riordan, The problem of the rooks and its applications, Duke Mathematical Journal 13.2 (1946): 259-268. Sequence is on page 267.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([0..40], n-> 2^n -3); # G. C. Greubel, Nov 18 2019
-
[2^n-3: n in [0..40]]; // Vincenzo Librandi, May 09 2011
-
A036563:=n->2^n-3; seq(A036563(n), n=0..40); # Wesley Ivan Hurt, Jun 26 2014
-
Table[2^n - 3, {n, 0, 40}] (* Wesley Ivan Hurt, Jun 26 2014 *)
LinearRecurrence[{3,-2},{-2,-1},40] (* Harvey P. Dale, Sep 26 2018 *)
-
a(n)= 2^n-3 \\ Charles R Greathouse IV, Dec 22 2011
-
def A036563(n): return (1<Chai Wah Wu, Sep 27 2024
-
[gaussian_binomial(n,1,2)-2 for n in range(0,40)] # Zerinvary Lajos, May 31 2009
A078057
Expansion of (1+x)/(1-2*x-x^2).
Original entry on oeis.org
1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199, 886731088897
Offset: 0
G.f. = 1 + 3*x + 7*x^2 + 17*x^3 + 41*x^4 + 99*x^5 + 239*x^6 + 577*x^7 + ... - _Michael Somos_, Jul 28 2018
- A. Froehlich and M. J. Taylor, Algebraic Number Theory, Cambridge, 1991 (see p. 3).
- Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 7.
- César Bautista-Ramos and Carlos Guillén-Galván, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8
- Tanya Khovanova, Recursive Sequences
- Constantinos Kourouzides, Study of an elementary trace monoid with two commuting generators, GitHub repository.
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 5.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
- Shiva Samieinia, Digital straight line segments and curves, Licentiate Thesis, Stockholm University, Department of Mathematics, Report 2007:6.
- Shiva Samieinia, The number of continuous curves in digital geometry, Port. Math. 67 (1) (2010) 75-89
- Gyula Tasi and Fujio Mizukami, Quantum algebraic-combinatoric study of the conformational properties of n-alkanes, J. Math. Chemistry, 25, 1999, 55-64 (see p. 63).
- Index entries for linear recurrences with constant coefficients, signature (2,1).
Essentially the same as
A001333, which has many more references.
-
a078057 = sum . a035607_row -- Reinhard Zumkeller, Jul 20 2013
-
Expand[Table[((1 + Sqrt[2])^n + (1 - Sqrt[2])^n)/2, {n, 1, 30}]] (* Artur Jasinski, Dec 10 2006 *)
CoefficientList[Series[(1 + x)/(1 - 2 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2014 *)
a[ n_] := ChebyshevT[n+1, I] / I^(n+1); (* Michael Somos, Jul 28 2018 *)
-
{a(n) = polchebyshev(n+1, 1, I) / I^(n+1)}; /* Michael Somos, Jul 28 2018 */
A046717
a(n) = 2*a(n-1) + 3*a(n-2), a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165, 3812798742493, 11438396227481
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- P. D. Jarvis and J. G. Sumner, Matrix group structure and Markov invariants in the strand symmetric phylogenetic substitution model, arXiv preprint arXiv:1307.5574 [q-bio.PE], 2013.
- Index entries for linear recurrences with constant coefficients, signature (2,3).
The first difference sequence of
A015518.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
[n le 2 select 1 else 2*Self(n-1)+3*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
-
[(3^n + (-1)^n)/2: n in [0..30]]; // G. C. Greubel, Jan 07 2018
-
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
seq(denom(((-2)^(2*n)+6^(2*n))/((-2)^n+6^n)),n=0..26)
-
Table[(3^n + (-1)^n)/2, {n, 0, 30}] (* Artur Jasinski, Dec 10 2006 *)
CoefficientList[ Series[(1 - x)/(1 - 2x - 3x^2), {x, 0, 30}], x] (* Robert G. Wilson v, Apr 04 2011 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Apr 04 2011 *)
-
{a(n) = (3^n+(-1)^n)/2};
for(n=0,30, print1(a(n), ", ")) /* modified by G. C. Greubel, Jan 07 2018 */
-
x='x+O('x^30); Vec((1-x)/((1+x)*(1-3*x))) \\ G. C. Greubel, Jan 07 2018
-
[lucas_number2(n,2,-3)/2 for n in range(0, 27)] # Zerinvary Lajos, Apr 30 2009
A026150
a(0) = a(1) = 1; a(n+2) = 2*a(n+1) + 2*a(n).
Original entry on oeis.org
1, 1, 4, 10, 28, 76, 208, 568, 1552, 4240, 11584, 31648, 86464, 236224, 645376, 1763200, 4817152, 13160704, 35955712, 98232832, 268377088, 733219840, 2003193856, 5472827392, 14952042496, 40849739776
Offset: 0
G.f. = 1 + x + 4*x^2 + 10*x^3 + 28*x^4 + 76*x^5 + 208*x^6 + 568*x^7 + ...
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002.
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- Nicolas Bonichon and Pierre-Jean Morel, Baxter d-permutations and other pattern avoiding classes, arXiv:2202.12677 [math.CO], 2022.
- A. Burstein, S. Kitaev and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
- Guillaume Escamocher and Barry O'Sullivan, Three-Dimensional Matching Instances Are Rich in Stable Matchings, CPAIOR 2018, pages 182-197.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1052
- Tanya Khovanova, Recursive Sequences
- Emanuele Munarini, A generalization of André-Jeannin's symmetric identity, Pure Mathematics and Applications (2018) Vol. 27, No. 1, 98-118.
- Nathan Sun, On d-permutations and Pattern Avoidance Classes, arXiv:2208.08506 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (2,2).
- Index entries for sequences related to Chebyshev polynomials.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
Cf.
A001075,
A001834,
A083337,
A002605,
A143908,
A028859,
A030195,
A106435,
A108898,
A125145,
A053120.
-
a026150 n = a026150_list !! n
a026150_list = 1 : 1 : map (* 2) (zipWith (+) a026150_list (tail
a026150_list))
-- Reinhard Zumkeller, Oct 15 2011
-
[n le 2 select 1 else 2*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 07 2018
-
with(combstruct):ZL0:=S=Prod(Sequence(Prod(a, Sequence(b))), a):ZL1:=Prod(begin_blockP, Z, end_blockP):ZL2:=Prod(begin_blockLR, Z, Sequence(Prod(mu_length, Z), card>=1), end_blockLR): ZL3:=Prod(begin_blockRL, Sequence(Prod(mu_length, Z), card>=1), Z, end_blockRL):Q:=subs([a=Union(ZL2,ZL2,ZL2), b=ZL1], ZL0), begin_blockP=Epsilon, end_blockP=Epsilon, begin_blockLR=Epsilon, end_blockLR=Epsilon, begin_blockRL=Epsilon, end_blockRL=Epsilon, mu_length=Epsilon:temp15:=draw([S, {Q}, unlabelled], size=15):seq(count([S, {Q}, unlabelled], size=n)/3, n=2..27); # Zerinvary Lajos, Mar 08 2008
-
Expand[Table[((1 + Sqrt[3])^n + (1 - Sqrt[3])^n)/(2), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
LinearRecurrence[{2, 2}, {1, 1}, 30] (* T. D. Noe, Mar 25 2011 *)
Round@Table[LucasL[n, Sqrt[2]] 2^(n/2 - 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
a(n) := if n<=1 then 1 else 2*a(n-1)+2*a(n-2);
makelist(a(n),n,0,20); /* Emanuele Munarini, Apr 14 2017 */
-
{a(n) = if( n<0, 0, real((1 + quadgen(12))^n))};
-
from sage.combinat.sloane_functions import recur_gen2; it = recur_gen2(1,1,2,2); [next(it) for i in range(30)] # Zerinvary Lajos, Jun 25 2008
-
[lucas_number2(n,2,-2)/2 for n in range(0, 26)] # Zerinvary Lajos, Apr 30 2009
A026597
Expansion of (1+x)/(1-x-4*x^2).
Original entry on oeis.org
1, 2, 6, 14, 38, 94, 246, 622, 1606, 4094, 10518, 26894, 68966, 176542, 452406, 1158574, 2968198, 7602494, 19475286, 49885262, 127786406, 327327454, 838473078, 2147782894, 5501675206, 14092806782, 36099507606, 92470734734
Offset: 0
-
[n le 2 select n else Self(n-1) + 4*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 08 2021
-
LinearRecurrence[{1,4},{1,2},40] (* Harvey P. Dale, Nov 28 2011 *)
-
[(2*i)^n*( chebyshev_U(n, -i/4) - (i/2)*chebyshev_U(n-1, -i/4) ) for n in (0..40)] # G. C. Greubel, Dec 08 2021
A151821
Powers of 2, omitting 2 itself.
Original entry on oeis.org
1, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Partial sums are given by 2*
A000225(n)-1, which is not the same as
A000918.
-
a151821 n = a151821_list !! (n-1)
a151821_list = x : xs where (x : _ : xs) = a000079_list
-- Reinhard Zumkeller, Dec 16 2013
-
[1] cat [2^n: n in [2..35]]; // Vincenzo Librandi, Jul 21 2013
-
CoefficientList[Series[(1 + 2 x)/(1 - 2 x), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
DeleteCases[2^Range[0, 33], p_ /; PrimeQ @ p] (* Michael De Vlieger, Aug 06 2016 *)
Join[{1}, 2^Range[2, 20]] (* Eric W. Weisstein, Nov 17 2017 *)
-
a(n)=if(n>1,2^n,1) \\ Charles R Greathouse IV, Dec 08 2015
-
Vec(x*(1+2*x)/(1-2*x) + O(x^100)) \\ Altug Alkan, Dec 09 2015
-
def A151821(n): return 1<1 else 1 # Chai Wah Wu, Jun 10 2025
Showing 1-10 of 23 results.
Comments