A178442 Two numbers k and l we call equivalent if they have the same vector of exponents with positive components in prime power factorization. Let a(1)=1, a(2)=3. Then a(n)>a(n-1) is the smallest number equivalent to n.
1, 3, 5, 9, 11, 14, 17, 27, 49, 51, 53, 63, 67, 69, 74, 81, 83, 98, 101, 116, 118, 119, 127, 135, 169, 177, 343, 356, 359, 366, 367, 3125, 3127, 3131, 3133, 3249, 3251, 3254, 3261, 3272, 3299, 3302, 3307, 3308, 3316, 3317, 3319, 3321, 3481
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
nxt[{n_,a_}]:=Module[{j=FactorInteger[n+1][[All,2]],k=a+1},While[ j!= FactorInteger[k][[All,2]],k++];{n+1,k}]; Join[{1},NestList[nxt,{2,3},50][[All,2]]] (* Harvey P. Dale, Jul 03 2020 *)
-
Sage
prime_signature = lambda n: [m for p, m in factor(n)] @CachedFunction def A178442(n): if n <= 2: return {1:1, 2:3}[n] psig_n = prime_signature(n) return next(k for k in IntegerRange(A178442(n-1)+1,infinity) if prime_signature(k) == psig_n) # D. S. McNeil, Dec 22 2010
Extensions
Corrected and extended by D. S. McNeil, Dec 22 2010
Comments