cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173075 T(n,k) = binomial(n, k) - 1 + q^(floor(n/2))*binomial(n-2, k-1) for 0 < k < n with T(n,0) = T(n,n) = 1 and q = 1. Triangle read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 12, 12, 5, 1, 1, 6, 18, 25, 18, 6, 1, 1, 7, 25, 44, 44, 25, 7, 1, 1, 8, 33, 70, 89, 70, 33, 8, 1, 1, 9, 42, 104, 160, 160, 104, 42, 9, 1, 1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 09 2010

Keywords

Comments

Rows two through six appear in the table on p. 8 of Getzler. Cf. also A167763. - Tom Copeland, Jan 22 2020
The triangle sequences having the form T(n,k,p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 have the row sums Sum_{k=0..n} T(n,k,p) = 2^(n-2)*p^n + 2^n - (n-1) - (5/4)*[n=0] -(p/2)*[n=1]. - G. C. Greubel, Feb 12 2021

Examples

			Triangle begins:
  1,
  1,  1;
  1,  2,  1;
  1,  3,  3,   1;
  1,  4,  7,   4,   1;
  1,  5, 12,  12,   5,   1;
  1,  6, 18,  25,  18,   6,   1;
  1,  7, 25,  44,  44,  25,   7,   1;
  1,  8, 33,  70,  89,  70,  33,   8,  1;
  1,  9, 42, 104, 160, 160, 104,  42,  9,  1;
  1, 10, 52, 147, 265, 321, 265, 147, 52, 10, 1;
  ...
Row sums: {1, 2, 4, 8, 17, 36, 75, 154, 313, 632, 1271, ...}.
		

Crossrefs

Cf. A132044 (q=0), this sequence (q=1), A173076 (q=2), A173077 (q=3).
Cf. A132044 (p=0), this sequence (p=1), A173046 (p=2), A173047 (p=3).
Cf. A167763.

Programs

  • Magma
    T:= func< n,k,p | k eq 0 or k eq n select 1 else Binomial(n,k) + p^n*Binomial(n-2,k-1) -1 >;
    [T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
  • Mathematica
    T[n_, m_]:= If[m==0 || m==n, 1, Binomial[n, m] - 1 + Binomial[n-2, m-1]];
    Table[T[n, m], {n, 0, 10}, {m, 0, n}]//Flatten
  • PARI
    T(n,k)={if(k<=0||k>=n, k==0||k==n, binomial(n,k) - 1 + binomial(n-2, k-1))} \\ Andrew Howroyd, Jan 22 2020
    
  • Sage
    def T(n,k,p): return 1 if (k==0 or k==n) else binomial(n,k) + p^n*binomial(n-2,k-1) -1
    flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
    

Formula

T(n, k) = binomial(n, k) - 1 + binomial(n-2, k-1) for 0 < k < n.
T(n, 0) = T(n, n) = 1.
From G. C. Greubel, Feb 12 2021: (Start)
T(n, k, p) = binomial(n, k) + p^n*binomial(n-2, k-1) - 1 with T(n, 0) = T(n, n) = 1 and p = 1.
Sum_{k=0..n} T(n, k, 1) = 2^(n-2) + 2^n - (n-1) - (5/4)*[n=0] -(1/2)*[n=1]. (End)