A173148 a(n) = cos(2*n*arccos(sqrt(n))).
1, 1, 17, 485, 18817, 930249, 55989361, 3974443213, 325142092801, 30122754096401, 3117419602578001, 356452534779818421, 44627167107085622401, 6071840759403431812825, 892064955046043465408177, 140751338790698080509966749, 23737154316161495960243527681
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..321
- Wikipedia, Chebyshev polynomials.
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
GAP
a:=List([0..20],n->Sum([0..n],k->Binomial(2*n,2*k)*(n-1)^(n-k)*n^k));; Print(a); # Muniru A Asiru, Jan 03 2019
-
Magma
[&+[Binomial(2*n,2*k)*(n-1)^(n-k)*n^k: k in [0..n]]: n in [0..20]]; // Vincenzo Librandi, Jan 03 2019
-
Mathematica
Table[Round[Cos[2 n ArcCos[Sqrt[n]]]], {n, 0, 30}] (* Artur Jasinski, Feb 11 2010 *)
-
PARI
{a(n) = sum(k=0, n, binomial(2*n, 2*k)*(n-1)^(n-k)*n^k)} \\ Seiichi Manyama, Dec 27 2018
-
PARI
{a(n) = round(cosh(2*n*acosh(sqrt(n))))} \\ Seiichi Manyama, Dec 27 2018
-
PARI
{a(n) = polchebyshev(n, 1, 2*n-1)} \\ Seiichi Manyama, Dec 29 2018
Formula
a(n) ~ exp(-1/2) * 2^(2*n-1) * n^n. - Vaclav Kotesovec, Apr 05 2016
a(n) = Sum_{k=0..n} binomial(2*n,2*k)*(n-1)^(n-k)*n^k. - Seiichi Manyama, Dec 27 2018
a(n) = cosh(2*n*arccosh(sqrt(n))). - Seiichi Manyama, Dec 27 2018
a(n) = T_{2*n}(sqrt(n)) = T_{n}(2*n-1) where T_{n}(x) is a Chebyshev polynomial of the first kind. - Seiichi Manyama, Dec 29 2018
a(n) = A322790(n-1, n) for n > 0. - Seiichi Manyama, Dec 29 2018
Extensions
Minor edits by Vaclav Kotesovec, Apr 05 2016
Comments