A173188
a(n) = binomial(n + 5, 5)*9^n.
Original entry on oeis.org
1, 54, 1701, 40824, 826686, 14880348, 245525742, 3788111448, 55401129927, 775615818978, 10470813556203, 137072468372112, 1747673971744428, 21778706417122872, 266011342666286508, 3192136111995438096, 37707107822946112509, 439176902879019428046
Offset: 0
-
[Binomial(n+5, 5)*9^n: n in [0..20]]; // Vincenzo Librandi, Oct 13 2011
-
Table[Binomial[n + 5, 5]*9^n, {n, 0, 20}]
A173191
a(n) = binomial(n + 6, 6)*9^n.
Original entry on oeis.org
1, 63, 2268, 61236, 1377810, 27280638, 491051484, 8207574804, 129269303163, 1939039547445, 27922169483208, 388371993720984, 5243021915233284, 68965903654222428, 886704475554288360, 11172476391984033336, 138259395350802412533, 1683511461036241140843
Offset: 0
A173192
a(n) = binomial(n + 7, 7)*9^n.
Original entry on oeis.org
1, 72, 2916, 87480, 2165130, 46766808, 911952756, 16415149608, 277005649635, 4432090394160, 67810983030648, 998670840996816, 14231059484204628, 197045439012064080, 2660113426662865080, 35113497231949819056, 454280870438350784037, 5772039294981398197176
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (72,-2268,40824,-459270,3306744,-14880348,38263752,-43046721).
A317052
Triangle read by rows: T(0,0) = 1; T(n,k) = 9*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 9, 81, 1, 729, 18, 6561, 243, 1, 59049, 2916, 27, 531441, 32805, 486, 1, 4782969, 354294, 7290, 36, 43046721, 3720087, 98415, 810, 1, 387420489, 38263752, 1240029, 14580, 45, 3486784401, 387420489, 14880348, 229635, 1215, 1, 31381059609, 3874204890, 172186884, 3306744, 25515, 54
Offset: 0
Triangle begins:
1;
9;
81, 1;
729, 18;
6561, 243, 1;
59049, 2916, 27;
531441, 32805, 486, 1;
4782969, 354294, 7290, 36;
43046721, 3720087, 98415, 810, 1;
387420489, 38263752, 1240029, 14580, 45;
3486784401, 387420489, 14880348, 229635, 1215, 1;
31381059609, 3874204890, 172186884, 3306744, 25515, 54;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 100.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 9 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 11}, {k, 0, Floor[n/2]}] // Flatten
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, 9*T(n-1, k)+T(n-2, k-1)));
tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
A196221
Binomial(n+10, 10)*9^n.
Original entry on oeis.org
1, 99, 5346, 208494, 6567561, 177324147, 4255779528, 93019181112, 1883638417518, 35789129932842, 644204338791156, 11068601821048044, 182631930047292726, 2908062270753045714, 44867246463046991016, 673008696945704865240, 9842752192830933654135, 140693457815171581056165, 1969708409412402134786310
Offset: 0
A197194
a(n) = binomial(n+9, 9)*9^n.
Original entry on oeis.org
1, 90, 4455, 160380, 4691115, 118216098, 2659862205, 54717165360, 1046465787510, 18836384175180, 322102169395578, 5270762771927640, 83014513657860330, 1264374900327411180, 18694686026269579590, 269203478778281946096, 3785673920319589866975, 52108688079693178168950, 703467289075857905280825
Offset: 0
-
[Binomial(n+9, 9)*9^n: n in [0..20]];
-
Table[Binomial[n+9,9]9^n,{n,0,20}] (* Harvey P. Dale, Feb 22 2020 *)
-
A197194_list, m, k = [], [1]*10, 1
for _ in range(10**2):
A197194_list.append(k*m[-1])
k *= 9
for i in range(9):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
Showing 1-6 of 6 results.
Comments